

Sabyasachi Dutta, Nilay Ghosh, Kousik Goon, Sandip Jana,

Arindam Mukherjee, Srinivas Rao, Yogeendar Rao, Yogesh

Sane, Naveen Veshala, Kiran Viswanathan

Workflow for SAP S/4HANA®

Imprint

This e-book is a publication many contributed to,

specifically:

Editor Meagan White

Acquisitions Editor Hareem Shafi

Copyeditor Julie McNamee

Cover Design Graham Geary

 iStockphoto: 155443175/© ryasick

Production E-Book Hannah Lane

Typesetting E-Book Satz-Pro, Germany

We hope that you liked this e-book. Please share your

feedback with us and read the Service Pages to find out how

to contact us.

The Library of Congress Cataloging-in-Publication

Control Number for the printed edition is as follows:

2023948041

ISBN 978-1-4932-2428-9 (print)

ISBN 978-1-4932-2429-6 (e-book)

ISBN 978-1-4932-2430-2 (print and e-book)

© 2024 by Rheinwerk Publishing Inc., Boston (MA)

1st edition 2024

Notes on Usage

This e-book is protected by copyright. By purchasing this

e-book, you have agreed to accept and adhere to the

copyrights. You are entitled to use this e-book for personal

purposes. You may print and copy it, too, but also only for

personal use. Sharing an electronic or printed copy with

others, however, is not permitted, neither as a whole nor in

parts. Of course, making them available on the internet or in

a company network is illegal as well.

For detailed and legally binding usage conditions, please

refer to the section Legal Notes.

This e-book copy contains a digital watermark, a

signature that indicates which person may use this copy:

Notes on the Screen

Presentation

You are reading this e-book in a file format (EPUB or Mobi)

that makes the book content adaptable to the display

options of your reading device and to your personal needs.

That’s a great thing; but unfortunately not every device

displays the content in the same way and the rendering of

features such as pictures and tables or hyphenation can

lead to difficulties. This e-book was optimized for the

presentation on as many common reading devices as

possible.

If you want to zoom in on a figure (especially in iBooks on

the iPad), tap the respective figure once. By tapping once

again, you return to the previous screen. You can find more

recommendations on the customization of the screen layout

on the Service Pages.

Table of Contents

Notes on Usage

Table of Contents

Preface

Part I SAP Business

Workflow for SAP S/4HANA

1 Getting Started

1.1 Workflows in SAP S/4HANA

1.1.1 Evolution of Workflows from SAP ERP to SAP

S/4HANA

1.1.2 Workflow Options

1.2 Workflows in SAP Business

Technology Platform

1.3 Workflow Development Tools

1.3.1 Tools for Classical Workflow

1.3.2 Tools for Flexible Workflow

1.3.3 BRFplus Development Tools

1.3.4 Tools for SAP Business Technology Platform

1.4 Identity and Access Management

1.4.1 Roles and Authorizations in SAP S/4HANA

1.4.2 Roles and Authorizations in SAP Business

Technology Platform

1.5 Summary

2 Introduction to Classical

Workflows

2.1 Evolution of Classical Workflows

2.2 Standard Workflows

2.2.1 Searching for Standard Workflows

2.2.2 Commonly Used Standard Workflows

2.3 Configuring the SAP Business

Workflow System

2.3.1 Maintain Runtime Environment

2.3.2 Maintain Definition Environment

2.3.3 Maintain Additional Settings and Services

2.3.4 Classify Tasks as General

2.4 Activating and Deactivating Standard

Workflows

2.5 Configuring Agents for Standard

Workflows

2.6 When to Develop a Custom Workflow

2.7 Summary

3 Building Methods and

Tasks

3.1 Business Object Repository Approach

3.1.1 Business Object Type Definition

3.1.2 Defining a Custom Business Object

Repository Object Type

3.1.3 Creating Key Fields and Attributes

3.1.4 Creating Methods and Defining Properties,

Parameters, and Exceptions

3.1.5 Creating Business Object Repository Events

3.1.6 Testing a Business Object Repository Object

Type

3.1.7 Creating a Subtype of a Standard Business

Object Repository Object Type

3.1.8 Delegation

3.1.9 Business Object Repository Programming

3.2 ABAP Class Approach

3.2.1 Creating a Workflow Class

3.2.2 Defining Key Attributes and Non-Key

Attributes

3.2.3 Creating Methods and Defining Attributes,

Parameters, and Exceptions

3.2.4 Adding New Methods for Dialog and

Background Tasks

3.2.5 Method Exceptions

3.2.6 Creating Events

3.2.7 Testing an ABAP Workflow Class

3.3 Task Definition

3.3.1 Defining Standard Tasks and Task Settings

3.3.2 Work Item Text and Description

3.4 Summary

4 Defining Workflows and

Adding Steps

4.1 Workflow Builder

4.2 Common Workflow Steps

4.3 Adding Tasks

4.3.1 Adding an Activity Step

4.3.2 Adding a Send Email Step

4.3.3 Adding a User Decision Step

4.4 Containers and Bindings

4.4.1 Types of Containers

4.4.2 Binding Definition and Binding Operators

4.4.3 Custom Transformations in Binding

4.5 Multiline Elements and Dynamic

Parallel Processing

4.6 Deadline Definition

4.7 Summary

5 Defining and Triggering

Events

5.1 Event Triggering Techniques

5.1.1 Event Trigger via Change Documents

5.1.2 Event Trigger via Status Management

5.1.3 Event Trigger via Message Control

5.1.4 Event Trigger via ABAP Code in User Exits,

Business Add-Ins, and Custom Programs

5.2 Event Creators, Receivers, and Event

Linkage

5.3 Start Conditions in Workflows

5.4 Terminating Events and Instance

Linkage

5.5 Check Function Module and Receiver

Function Module for Events

5.6 Summary

6 Agent Determination

6.1 Different Types of Agents in Workflow

6.1.1 Possible Agents and Responsible Agents

6.1.2 Excluded Agents

6.1.3 Actual Agents

6.1.4 Deadline Agents

6.1.5 Notification Agents

6.2 Agent Determination Rules

6.2.1 Rule Definition

6.2.2 Rule Container

6.2.3 Binding to the Rule Container

6.2.4 Rule Types

6.3 Possible Agents in Tasks and Default

Rules

6.4 Organizational Structure Definition

and Linking to Workflow Agents

6.5 Summary

7 Email Notifications and

Other Runtime Jobs

7.1 Prerequisites for Setting Up Email

Notifications in Workflow

7.1.1 Setting Up Email IDs for SAP Users

7.1.2 Setting up SAPconnect

7.2 Classical Work Item Email

Notifications via Program RSWUWFML2

7.3 Extended Notification Configuration

with Program SWNCONFIG

7.3.1 Overview of the Notification Process

7.3.2 Detailed Customizing

7.4 Adding Inbox and Work Item URL

Links to Workflow Work Item Notifications

7.5 Additional Workflow Runtime Jobs

7.6 Summary

8 Workflow Administration,

Monitoring, and

Troubleshooting

8.1 Workflow Log

8.2 Workflow Administration

8.3 Workflow Error Diagnosis and

Resolution

8.4 Workflow Inbox and Features

8.5 Substitution and Automatic

Forwarding

8.5.1 Substitutions in SAP GUI

8.5.2 Substitutions in SAP Fiori

8.6 Display Dynamic Labels for Tasks to

Display in Business Workplace

8.7 Event Trace and Event Queue

Administration

8.8 Process Incoming Documents with

ArchiveLink

8.9 Summary

9 Application Link Enabling

and Reporting

9.1 Error Handling during IDoc Processing

9.1.1 Business Requirements for Inbound IDoc

Error Handling

9.1.2 Handling the Inbound IDoc Error

9.1.3 Notification of Successful Posting

9.1.4 Testing Procedure

9.1.5 Setting Up an Inbound IDoc Process via a

Workflow

9.2 Active Monitoring

9.3 Common Workflow Data Tables

9.4 Common Workflow Application

Programming Interfaces

9.5 Workflow Reporting

9.6 Implementing Program Exits to

Capture Data from Workflow Steps

9.7 Summary

10 BRFplus

10.1 Introduction to BRFplus

10.1.1 Business Rules Management Systems

10.1.2 Rule Modeling

10.1.3 Rule Execution Engine

10.2 Integrating BRFplus Applications in

SAP Business Workflow

10.2.1 BRFplus Application Overview

10.2.2 Attach a BRFplus Function in a Business

Workflow

10.2.3 Executing the Workflow

10.3 Summary

11 Integrating Workflows

with User Interface

Applications and External

Applications

11.1 My Inbox App Overview

11.2 Workflow Task Integration with User

Interface Applications

11.2.1 Set Up a Scenario-Specific My Inbox Tile

11.2.2 Create and Maintain User Attributes:

Adding Additional Attributes for a Task

11.2.3 Launching SAPUI5 Applications from

Workflow Tasks

11.2.4 Launching Web Dynpro Applications from

Workflow Tasks

11.3 Email Templates in SAP S/4HANA

11.4 Integrating External Applications

with SAP Business Workflow

11.5 Summary

12 Migrating SAP ERP

Workflows to SAP S/4HANA

12.1 Migration Options from SAP ERP to

SAP S/4HANA

12.2 Conversion Projects (Brownfield)

12.2.1 Handling System Upgrades for Standard

and Custom Workflows

12.2.2 Migrating Your SAP ERP Workflows to SAP

S/4HANA

12.3 New Implementation Projects

(Greenfield) and Selective Data Transition

12.3.1 Selective Data Transition Overview

12.3.2 Managing the Technical Migration of In-

Process Workflows

12.3.3 Migrating User Data and SAP Office

Settings from SAP ERP to SAP S/4HANA

12.4 Summary

13 Workflow in SAP Master

Data Governance

13.1 Introduction to SAP Master Data

Governance

13.1.1 Data Models in Central Governance

13.1.2 Change Request in Central Governance

13.1.3 Business Object BUS2250

13.1.4 Standard Dialog Tasks Used in Workflow

Templates

13.1.5 Standard Dialog Tasks

13.1.6 Standard Background Tasks

13.1.7 Agent Determination

13.1.8 Workflow Container Used by Workflow

Templates

13.1.9 Workflow Log for Change Requests

13.1.10 Rule-Based Workflow Template

13.1.11 SAP Master Data Governance,

Consolidation and Mass Processing

13.2 Business Partner Workflows

13.2.1 Business Partner Data Model and Approach

13.2.2 Change Requests for Business Partner

Master Data

13.2.3 Workflow Templates Used in Business

Partner Change Requests

13.3 Finance Workflows

13.3.1 Finance Data Model

13.3.2 Change Request Types in the Finance Data

Model

13.3.3 Workflow Templates Used in Finance

Change Requests

13.4 Material Workflows

13.5 Summary

Part II Flexible Workflow

in SAP S/4HANA

14 Introduction to Flexible

Workflow

14.1 Authorizations and SAP Fiori

Applications Required for Development

14.2 Flexible Workflow Scenarios

14.2.1 Standard Flexible Scenarios

14.2.2 Custom Flexible Scenarios

14.2.3 Comparing Flexible and Classical Workflows

14.2.4 Choosing Between Classical and Flexible

Workflows

14.3 Migrating to Flexible Workflows

14.4 Setting Up a Standard Flexible

Workflow Scenario

14.4.1 Finding Standard Workflows on SAP Help

14.4.2 Finding Workflows in Scenario Editor and

the Manage Workflows App

14.4.3 Activating the Scenario

14.4.4 Setting Up a Standard Scenario Using the

Manage Workflows App

14.5 Extending the Standard Flexible

Scenario

14.6 Summary

15 Custom Scenario

Development

15.1 Workflow Class Development

15.1.1 Use Case for Walkthrough of Custom

Scenario

15.1.2 Classes

15.1.3 Interfaces

15.1.4 Attributes

15.1.5 Events

15.1.6 Standard Methods

15.2 Business Objects

15.2.1 Maintain Business Object Type (V_BO_TYPE)

15.2.2 Maintain Object Node Type

(SBO_V_NODETYPE)

15.2.3 Maintain Core Data Services View

(V_SBO_NODE_CDS)

15.2.4 Maintain Object Representation

15.3 Scenario Development

15.3.1 Context Element

15.3.2 Process Data

15.3.3 Control

15.3.4 Activities

15.3.5 Conditions

15.3.6 Agent Rules

15.3.7 Value Helps

15.3.8 Email Templates

15.4 Create a Workflow Template Using

the Manage Workflows App

15.5 Initiating the Custom Flexible

Workflow

15.6 My Inbox Integration

15.6.1 Define Step Names and Decision Options

15.6.2 Define Visualization Metadata for My Inbox

15.6.3 My Inbox for Custom Scenario Walkthrough

15.7 Troubleshooting

15.8 Summary

16 SAP Fiori Applications for

Flexible Workflow

16.1 Adaptation Transport Organizer

Setup

16.2 Maintain Email Templates App

16.3 Notification Features

16.4 Manage Teams and Responsibilities

App

16.5 Transporting Extensions

16.5.1 Configure Software Packages

16.5.2 Register Extensions for Transport

16.5.3 Transporting Workflow Scenario Content

16.6 Summary

Part III Workflows with

SAP Business Technology

Platform

17 Introduction to SAP Build

Process Automation

17.1 Overview

17.2 Typical Use Cases for SAP S/4HANA

17.3 System and Service Requirements

17.4 Setting Up the Required Services

17.5 Working with the Workflow Cockpit

17.6 Security

17.6.1 Process Automation Admin

17.6.2 Process Automation Developer

17.6.3 Process Automation Participants

17.7 Troubleshooting

17.8 Summary

18 Process Development

18.1 Workflow Design Techniques

18.2 Creating a Workflow Using SAP

Business Application Studio

18.2.1 Create a Workflow Module

18.2.2 Tasks in Workflows

18.2.3 Using Gateways

18.2.4 Events

18.3 Creating a Workflow Using Process

Builder

18.3.1 Using Process Builder

18.3.2 Using Triggers

18.3.3 Using Forms

18.3.4 Using Approval Forms

18.3.5 Using Automation Tasks

18.3.6 Using Decisions

18.3.7 Using Subprocesses

18.3.8 Using Actions

18.3.9 Using Mail

18.3.10 Using Controls

18.4 Building and Deploying the Project

18.4.1 Release

18.4.2 Deploy

18.4.3 Run

18.5 Destination Configuration with

Authentication

18.5.1 Destination Setup

18.5.2 Authentication

18.6 Transport Management

18.7 Using APIs for SAP Build Process

Automation

18.7.1 Application Programming Interfaces for

Workflow

18.7.2 Application Programming Interfaces for

Decisions

18.7.3 Application Programming Interfaces for My

Inbox

18.8 Design a Process/Workflow for the

Use Case

18.8.1 Use Case and Solution

18.8.2 Design Using Process Builder

18.8.3 Design Using SAP Business Application

Studio

18.9 Summary

19 Process Visibility

19.1 Configuring Process Visibility

19.1.1 Roles

19.1.2 Process Preparation

19.1.3 Create Visibility Scenario

19.1.4 Configure Visibility Scenario

19.1.5 Add Process to the Visibility Scenario

19.1.6 Configure Phases

19.1.7 Configure Status

19.1.8 Configure Performance Indicators

19.1.9 Release the Project

19.1.10 Deploy the Project

19.2 Testing the Process Visibility

Scenario

19.3 Process Monitoring and Real-Time

Insights

19.4 Add Workflow Actions to the

Dashboard

19.5 Using Application Programming

Interfaces for Process Visibility

19.6 Summary

20 Task Processing with My

Inbox

20.1 My Inbox for SAP Business

Technology Platform

20.1.1 Standard App in SAP Build Process

Automation

20.1.2 Configure My Inbox in SAP Build Work Zone

20.2 SAP Task Center

20.3 Summary

A The Authors

Index

Service Pages

Legal Notes

Preface

This preface will introduce you to the concept of workflow,

its usage in the SAP world, and the various options available

in SAP S/4HANA and SAP Business Technology Platform (SAP

BTP). As it happens for any good book, it first talks about

who should read and benefit from this book. Then, it gives a

glimpse into the various workflow technologies available in

SAP in the objective section. Finally, it ends with how to read

this book to get the most out of it.

Target Audience

This book is for the professionals and others who are

involved in the design, implementation, and administration

of SAP workflows and process automation. The book is

useful for a variety of roles inside organizations that already

use SAP systems or intend to do so in the future. The target

audience may include the following:

SAP consultants

SAP consultants specializing in workflow and process

automation, including SAP workflow consultants, ABAP

developers, and SAP technical consultants, seeking in-

depth knowledge of SAP workflows and automation

concepts

Business process owners

Individuals responsible for defining, optimizing, and

managing business processes within their organizations

and who wish to leverage SAP Business Workflow and/or

SAP Build Process Automation for process improvement

SAP administrators

SAP system administrators and Basis consultants who are

involved in setting up and configuring SAP workflows and

automation solutions using SAP Workflow Management

and/or SAP Build Process Automation

Workflow designers and developers

Workflow designers and developers who want to

understand the intricacies of designing efficient and

effective workflows using SAP tools, including the ones

available as part of SAP BTP

SAP project managers

Project managers leading SAP implementation projects,

especially those involving workflow automation, to gain a

holistic understanding of the concepts and best practices

Business analysts

Business analysts and process analysts who work closely

with business stakeholders to gather requirements and

translate them into workflow automation solutions

SAP end users

SAP end users involved in approving or participating in

workflow processes, who would benefit from

understanding the workflows they interact with and the

automation concepts

IT managers and decision-makers

IT managers and decision-makers responsible for

strategizing and overseeing the adoption of SAP Business

Workflow, flexible workflow, and SAP Build Process

Automation in their organizations

SAP developers and architects

SAP developers and solution architects looking to

integrate workflow automation into broader SAP-based

solutions

Objective of This Book

The objective of the book is to give you a thorough and

useful manual that equips you with the information and

abilities required to design, execute, and optimize

successful and effective workflow solutions inside the SAP

environment. The book aims to accomplish the following

objectives:

Understanding workflow concepts in SAP

The book should introduce you to the fundamental

concepts of workflow in SAP. Then it goes deep into the

various workflow options available in SAP such as classical

workflow, flexible workflow, SAP Workflow Management

(soon to be retired), and the latest option, SAP Build

Process Automation. While going deep into each of these

options, the book looks into the architecture, terminology,

and components. It also helps you understand the usage

of each of these options.

Workflow design and configuration

The book guides you through the process of designing and

configuring workflows in each of the preceding options. It

covers workflow templates, steps, tasks, and decision

logic, empowering you to create workflows tailored to

your specific business processes.

SAP Business Workflow

For the technical readers among you, the book delves into

the development aspects of SAP Business Workflow,

covering ABAP coding, user exits, event triggers, and

integrating custom functionality with workflows.

Flexible workflow

The book takes a deep dive into the concept of flexible

workflow introduced in SAP S/4HANA, how is it different

from SAP Business Workflow, why it’s called flexible

workflow, what value it offers to business users, where it’s

used, and so on.

SAP Build Process Automation

For those interested in process automation, the book

explores automation techniques and best practices, using

SAP Build Process Automation as a tool to streamline and

optimize business processes.

Workflow integration with SAP applications

The book demonstrates how to integrate SAP Business

Workflow with various SAP applications, such as SAP

S/4HANA, SAP Fiori, and SAP BTP, to enable seamless end-

to-end business processes. Advanced topics such as

parallel processing, escalation handling, dynamic decision

routing, and event-driven workflows are covered to

address complex workflow scenarios.

Best practices and optimization

The book provides you with best practices to ensure

efficient workflow design, performance optimization, and

tips for troubleshooting and error handling.

Latest trends and innovations

To keep you up to date, the book covers the latest trends,

innovations, and future road map for each of the different

variants of the workflow technology in SAP, including the

cloud-based workflows and integration with emerging

technologies such as machine learning.

How to Read This Book

Reading a book on workflows can be a rewarding experience

if you approach it systematically and with clear objectives.

Here are some steps to help you make the most out of

reading the book on workflows:

Start with Chapter 1

Begin by reading the first chapter of the book, which

provides an overview of the topics covered throughout the

entire book. It will give you a sense of what to expect

from the book.

Set learning objectives

Before diving into the book, determine your specific

learning objectives. Are you looking to understand the

basics of various workflow technology options in SAP,

learn about advanced concepts, or explore workflow

integration with other SAP applications? Having clear

objectives will help you focus your reading and retain

information better.

Skim through chapters

Take a quick look at the table of contents and skim

through the chapters. This will give you an idea of the

book’s structure and organization. Identify chapters that

are most relevant to your learning objectives, and start

with those.

Read chapters in a logical sequence

Read the chapters in a logical sequence to build a solid

foundation. Start with the basics and gradually move to

more advanced topics. Ensure you understand each

concept before proceeding to the next chapter.

Take notes

Keep a notebook or use digital note-taking tools to jot

down important points, key terms, and concepts you find

valuable. Taking notes will aid in retention and serve as a

reference for future use.

Practice with examples

Most chapters include practical examples. Work through

these examples to gain hands-on experience and

reinforce your understanding.

Review frequently

Periodically review the chapters you’ve read to reinforce

your understanding. This will help you retain information

for the long term.

Consult SAP documentation and other resources

As you progress through the book, consult SAP official

documentation and additional resources such as blogs,

videos, and so on to supplement your learning and gain

further insights.

Engage in discussion and communities

Engage in discussions with peers, colleagues, or online

communities related to workflow options in both SAP

S/4HANA and SAP BTP. Sharing insights and discussing

concepts with others can enhance your understanding.

Apply learnings in real projects

If you have the opportunity, try to apply what you’ve

learned in real-world workflow projects. Practical

application will solidify your knowledge and boost your

confidence.

Ask questions

If you encounter any doubts or questions while reading,

don’t hesitate to seek answers from SAP experts, forums,

or community platforms.

Remember, reading this book is just the first step in your

learning journey. Practical experience and continuous

learning are essential to master the various options of

workflow technology and process automation concepts in

SAP effectively.

Part I

SAP Business Workflow for SAP S/4HANA

This part will teach you how to create, maintain, and

customize classic workflows using the SAP Business

Workflow engine in SAP S/4HANA. You will also learn

about migrating workflows to the new environment,

designing a UI, and external system integration.

1 Getting Started

This chapter will introduce you to workflows in SAP

S/4HANA. You’ll get an overview of the workflow

options both within SAP S/4HANA and those available

via SAP Business Technology Platform (SAP BTP). The

chapter also explores workflow development tools and

offers a glimpse of the key roles and authorizations

required in each environment before you can design

workflows.

In this chapter, we’ll discuss how workflow evolved from SAP

ERP to SAP S/4HANA and some highlights of the new

capability SAP S/4HANA brings in the workflow area. SAP

Business Workflow provides a capability to automate the

business process steps into an orchestrated coherent single

end-to-end business process in your organization. It

improves the efficiency and performance of the process and

reduces the cycle time to complete the business process.

SAP Business Workflow isn’t just a technical capability of a

system; it’s built around human activities, so it’s very

important to consider the human factor when implementing

any workflow solution. We’ll also consider the similar areas

of evolution in workflow context when we see how SAP

Business Workflow evolved from SAP ERP to SAP S/4HANA.

We’ll provide an overview of the new capabilities SAP

S/4HANA brought to workflows. With so many options, it’s

sometimes confusing what to use when. We’ll provide you

with guidance on what SAP S/4HANA workflow capabilities

can be used where.

1.1 Workflows in SAP S/4HANA

The classic workflow was the only option in SAP ERP to

develop any business workflow. It’s still available in SAP

S/4HANA and supported, but there are now two new ways of

workflow development: flexible workflow and workflow in

SAP Business Technology Platform (SAP BTP). We’ll cover all

three types of workflow development in this book. We’ll

start with classical workflows, and then we’ll discuss further

on the flexible workflow and workflow on SAP BTP. In the

classical workflow, we’ll focus mostly on the capability used

and provide more details on the flexible workflow and

workflow on SAP BTP.

1.1.1 Evolution of Workflows from SAP ERP to

SAP S/4HANA

There are three main aspects of any workflow development:

Workflows can integrate different business transactions to

improve the end-to-end business process experience and

performance.

Workflows manage people’s actions, so the user interface

(UI) is always a key attribute of any workflow

development.

Workflows are always about the business process flow.

Business user involvement is needed during build and

maintenance of workflows.

There are significant changes in these three aspects of

workflow from SAP ERP to SAP S/4HANA, so let’s discuss

how workflows have evolved in these areas:

Integrating the process steps across systems

SAP Business Workflow started with integrating the

business transactions within the same application in SAP

ERP. Normally, the business scenarios are limited within

one system. There were simpler use cases where any

specific functions are called from other applications, or

another workflow can be triggered. But modern end-to-

end business processes cut across different systems; they

don’t stay within the boundary of SAP ERP or one

application. You can now implement workflows across

different SAP and non-SAP applications in SAP BTP. We’ll

discuss this in more detail in Section 1.2.

UI to process the work items

The UI has changed from SAP ERP to SAP S/4HANA. SAP

Fiori is the new recommended UI in SAP S/4HANA instead

of SAP GUI in SAP ERP, so you have to keep in mind the

new UI of SAP S/4HANA when using the classical workflow

(discussed in detail in Chapter 11). The way users access

any work item to process it has also evolved over time. It

started with Business Workplace, which is still available in

SAP S/4HANA. But considering all the new capabilities of a

platform like SAP BTP and the requirement to have one

common inbox for all kinds of work items, it isn’t used if

SAP S/4HANA is implemented with the modern capability.

The universal worklist of SAP Enterprise Portal was used

as single entry point for all work items in SAP ERP. Now

SAP Task Center or the My Inbox app is used in the

context of SAP S/4HANA. It can be a single user inbox

where user can access all SAP work items across the SAP

applications. including public cloud, on-premise

applications, and SAP BTP.

Easily configurable workflow

Flexible workflow was introduced in SAP S/4HANA as a

preconfigured workflow for some common business cases

that business users can configure themselves. The

preconfigured workflows may not always meet your

business requirements. You may have to engage

developers to enhance these workflows, but the

preconfigured workflows will at least provide a starting

point where the business or functional user can perform

the initial configuration and simulate the business

scenario. SAP Fiori-based agent determination and

BRFplus rules (integrated with workflows), also provide

more options for business users to maintain the workflow.

The workflow log available in My Inbox is user friendly.

Unlike in SAP ERP where workflow log can only be

understood by workflow developer, it’s simpler in SAP

S/4HANA, and anyone will be able to understand the

workflow approval history.

In SAP ERP, the workflow was developed in a classical way.

Now, in SAP S/4HANA, there are three ways to develop

workflow applications:

Classical workflow in SAP S/4HANA

Flexible workflow in SAP S/4HANA

Workflow in SAP Build Process Automation on SAP BTP

Let’s discuss the scenarios for when to adopt which

workflow build approach when you’re developing a new

workflow (see Table 1.1). We’ll also consider the availability

of the technology in three deployment platforms available

for SAP S/4HANA: on-premise SAP S/4HANA; SAP S/4HANA

Cloud, private edition; and SAP S/4HANA Cloud, public

edition.

Workflow

Development

Approach

When to Adopt

Recommended

Scenario

Deployment

Platform

Classical

workflow

The classical workflow is

still available and

supported in SAP

S/4HANA. End users

process these work

items using Business

Workplace (Transaction

SBWP) or universal

worklist in SAP

Enterprise Portal. In the

SAP S/4HANA classical

workflow, work items are

compatible with the My

Inbox app, and all

features are available,

including building new

custom workflows. It’s

recommended to look

for a flexible workflow

Available in on-

premise SAP

S/4HANA and

SAP S/4HANA

Cloud, private

edition (not

available in

SAP S/4HANA

Cloud, public

edition)

Workflow

Development

Approach

When to Adopt

Recommended

Scenario

Deployment

Platform

first in SAP S/4HANA. If

there is no flexible

workflow, but the

standard classical

workflow is available,

then use the classical

workflow. Any business

process enhancement of

the classical workflow

should be done with the

SAP developer

extensibility framework.

In-app extensions via

business add-ins (BAdIs)

are available for custom

conditions, custom

agent rules in the

responsibility

management

framework, and

scenario-specific

extensions (e.g.,

procurement).

The following help

document discusses

predelivered SAP

workflow scenarios:

http://s-prs.co/v569700.

http://s-prs.co/v569700

Workflow

Development

Approach

When to Adopt

Recommended

Scenario

Deployment

Platform

Flexible

workflow

Flexible workflow is

available in SAP

S/4HANA, and

predelivered flexible

workflows are available.

The basic functionality

and agent determination

are configurable. The

Manage Workflows app

from SAP Fiori is used for

configuring predelivered

flexible workflows. The

Teams and

Responsibility

Management app is

used for agent

determination. Flexible

workflow is built on the

same classical workflow

engine. The workflow log

transactions can be used

to view the flexible

workflow as well. But the

classical Workflow

Builder Transaction

SWDD won’t work for

flexible workflow.

Transaction

SWDD_SCENARIO is

used to create the

scenario for flexible

Available in on-

premise SAP

S/4HANA; SAP

S/4HANA Cloud,

private edition;

and SAP

S/4HANA Cloud,

public edition

Workflow

Development

Approach

When to Adopt

Recommended

Scenario

Deployment

Platform

workflow. Flexible

workflow is easy to

configure and is highly

integrated with SAP Fiori

apps and the new user

experience. This is the

preferable approach for

local SAP S/4HANA

workflow deployment.

SAP Build

Process

Automation

SAP Build Process

Automation on SAP BTP

is the strategic solution

for process orchestration

and workflow

development with

process insight. SAP

Build Process

Automation is discussed

in detail in Part III from

Chapter 17 onward.

Here are some of the

highlights of its

capabilities:

Integrates with SAP

and non-SAP

applications to

orchestrate

Implemented

on SAP BTP

integrated with

any on-premise

and cloud

applications

(e.g., SAP

Ariba; SAP

SuccessFactors;

and SAP

S/4HANA Cloud,

public edition)

Workflow

Development

Approach

When to Adopt

Recommended

Scenario

Deployment

Platform

seamlessly across

applications

Integrates with the

SAP Intelligent Robotic

Process Automation

functionality and

process visibility with

SAP Signavio Process

Insights and Qualtrics

for Experience

Management

Provides hundreds of

prebuilt content items

to jump-start any

process automation

development

SAP Build

Process

Automation

(Cont.)

Gives you easy-to-use

configuration

components to

develop workflow

process, approval

forms, task

automation, and

business rules for

decisions

Workflow

Development

Approach

When to Adopt

Recommended

Scenario

Deployment

Platform

Opens with a unified

user inbox launchpad

called the SAP Task

Center with easy-to-

consume graphical

process visibility

Enables simple

workflow processes to

be built with low-code

app development, and

provides full build

capability for complex

developments.

Here are some of the

scenarios where it

should be used:

Workflow for process

that spans multiple

applications, SAP or

non-SAP.

End-to-end workflow

that needs to be

integrated with the

capabilities of SAP

Intelligent Robotic

Process Automation,

Workflow

Development

Approach

When to Adopt

Recommended

Scenario

Deployment

Platform

SAP Integration Suite,

SAP Signavio Process

Insights and sentiment

analysis, or SAP Build

Process Automation. If

any workflow—

whether within one

system or across

multiple systems—

needs other

automation or

analytical capabilities,

SAP Build Process

Automation should be

considered.

Table 1.1 Workflow Development Approaches Available in SAP S/4HANA

1.1.2 Workflow Options

As mentioned in the previous section, classical workflow and

flexible workflow are mainly used with SAP S/4HANA

systems. The workflow on SAP BTP is used mainly to stich

processes across multiple systems with some exceptions.

We’ll now discuss classical and flexible workflow in this

section. Workflow on SAP BTP will be discussed in

Section 1.2.

Classical Workflow

With the evolution of SAP ERP into SAP S/4HANA, the

workflow development options have evolved significantly as

well. Developers get to use the new flexible workflow option

with the scenario approach (standard and custom) in a

process running within the SAP S/4HANA system only, or, in

case of a distributed environment scenario with processes

running across integrated systems, they may choose to

develop an SAP BTP workflow. However, the good old

classical option is still available in SAP S/4HANA as well. This

option should be explored only when your process

requirements can’t be met with flexible workflow.

Classical workflows offer the maximum flexibility in terms of

design and development due to the huge inventory of tools

and options available to the developer. However, they also

usually involve significant development efforts and incur

more costs to the customer to develop and support. They

also require a lot of GUI-based transactions to develop,

configure, and monitor, in contrast to flexible workflow,

which uses SAP Fiori apps to perform most development

tasks. While designing a classical workflow, you need to

consider the following key elements:

How to trigger the classical workflow

Usually, you’ll use the business object repository (BOR) or

class-based events to trigger a workflow. Therefore, the

first step is usually to identify if a standard event is

already raised by the application that you’re working with.

If a standard event already exists, then the business

object type or the ABAP class triggering this event is

probably the right choice for the leading object type of

your workflow. If no such event exists in standard, then

you may need to develop your custom ABAP class or BOR

type and configure a custom event to be raised under the

right conditions.

Workflow design

If a standard event already exists, then the next logical

step is to identify if a standard workflow exists as well that

suits your requirements. In most cases, the standard

workflow may not suffice and even if it did, you would

probably need to send your own subjects and texts on the

work items and notifications. Therefore, you would

probably need to copy the standard workflow and

customize it. If no standard workflow exists, then you

would need to develop a custom one using the Workflow

Builder. Start with a high-level design of the process just

like a flow diagram, and then expand on each building

block with more details. Any custom business logic

required in your workflow may be developed using BOR

methods or ABAP class methods using the leading object

type chosen in the previous step. You may sometimes

need to extend a standard BOR type using a subtype to

add your custom logic in a workflow.

Agent determination

This is usually a complex topic as the agent determination

technique for the same workflow may vary from one

customer to another. First you should check for any

standard options available for the application such as a

configurable table, rule, or responsibility. If you go for the

custom approach, then you can develop your own rule

using the classical responsibility approach, integrate with

a BRFplus application, or use the HR organization

structure if possible. If none of these options work, then

you can develop your own custom table(s) and a method

or a rule to read from the same.

Approvals and notification requirements

Consider the requirements of the workflow users in terms

of work item approvals and notifications. For work items,

the common access point is the My Inbox app. What kind

of frontend UIs are required for your workflow? The classic

user decision task is still the most-used frontend for

approvals. But if the users need to launch an SAP Fiori app

through My Inbox, then you may need to develop a task

with SAP Fiori integration. Similarly, for notifications, you

send emails to the user’s email address maintained in the

user master. You may need to think about extended

notifications for work items and approval, rejection, and

deadline notifications per the business requirements.

Figure 1.1 illustrates a simple process flow design using the

classical workflow approach.

Figure 1.1 Sample Workflow Definition Using the Classical Workflow

Approach

Flexible Workflow

Developing workflows by using the flexible workflow

framework is the recommended option in SAP S/4HANA

systems. SAP introduced a new way of creating workflows in

SAP S/4HANA systems with the no-code/low-code option.

Flexible workflow is a framework introduced in SAP S/4HANA

as part of the SAP S/4HANA workflow engine. It allows

developers to create simple workflow scenarios and allows

functional/business process specialists to model the process

flow very easily using SAP Fiori apps.

It’s built on top of the existing classical workflow framework.

By using this framework, you can make use of standard

flexible workflow scenario templates and easily tailor those

per your custom requirements. These workflow templates

are closely integrated with email templates to send

notifications to agents/approvers.

SAP tightly integrated the flexible workflows approval

process with the My Inbox app. All work items will be routed

to the My Inbox app, so approvers can check their work

items in their My Inbox app and take appropriate actions

based on the workflow setup. You can learn all the details

about flexible workflows in Chapter 14, Chapter 15, and

Chapter 16.

Let’s discuss some features of these local SAP S/4HANA

instance workflows by considering on-premise SAP

S/4HANA; SAP S/4HANA Cloud, private edition; and SAP

S/4HANA Cloud, public edition. On-premise SAP S/4HANA

and SAP S/4HANA Cloud, private edition, provide similar

features. So, in Table 1.2, let’s compare how some workflow

build features will work in SAP S/4HANA Cloud, private

edition, versus SAP S/4HANA Cloud, public edition.

Feature SAP S/4HANA Cloud,

Private Edition

SAP S/4HANA

Cloud, Public

Edition

Feature SAP S/4HANA Cloud,

Private Edition

SAP S/4HANA

Cloud, Public

Edition

User inbox to

process work

items

Both Business Workplace

and the My Inbox app

are available, but

Business Workplace isn’t

recommended. The My

Inbox app should be

used for all kinds of work

item processing and

notification

management. My Inbox

supports work items

created from both the

classical workflow and

flexible workflow. SAP

Task Center also can be

considered as a unified

user inbox.

Standard substitution

features are available.

You can also see the

workflow log from the

inbox or outbox. The

workflow log view is

much simpler and more

user friendly, but the

graphical log isn’t

available.

My Inbox and

SAP Task Center

should be used

in SAP S/4HANA

Cloud, public

edition. All

features are the

same as in SAP

S/4HANA Cloud,

private edition.

Feature SAP S/4HANA Cloud,

Private Edition

SAP S/4HANA

Cloud, Public

Edition

Workflow

development

approach

Flexible workflow is

recommended. Classical

workflow is also

supported. If any

business requirement

can’t be fulfilled by

flexible workflow, then

classical workflow should

be considered.

Workflow developed in

the classical way can’t

be displayed in the

Workflow Builder for

flexible workflow.

Flexible workflow can’t

be displayed in classical

workflow tools.

The Manage Workflow

app is used for flexible

workflow configuration,

and Transaction

SWDD_SCENARIO is used

for scenario building.

Classical

workflow isn’t

available for

customer

implementation.

Flexible

workflow is

used instead.

Each application

is configured

separately with

their scenario

IDs.

Feature SAP S/4HANA Cloud,

Private Edition

SAP S/4HANA

Cloud, Public

Edition

Agent

determination

Classical organizational

unit–based agent

determination is still

available, but it’s not

recommended. The

Terms and

Responsibilities app is

available where you can

define the responsible

persons for a specific

company code, plant,

and so on. You can also

use the agent rule and

write custom code to

determine the agent.

The Terms and

Responsibilities app is

supported for both

classical and flexible

workflows.

Classical

organizational

unit–based

agent

determination

isn’t available.

The Terms and

Responsibilities

app should be

used for agent

determination.

Feature SAP S/4HANA Cloud,

Private Edition

SAP S/4HANA

Cloud, Public

Edition

Workflow

development

capability

Flexible workflow doesn’t

have parallel processing

capability compared to

classical workflow.

Exceptions are handled

using a modeled

outcome and flow in

classical workflow. It’s

handled using code in

the Manage Workflows

app for flexible workflow.

All the tasks created in

flexible workflow are

automatically set as

general tasks.

Custom

scenarios

should be

developed using

SAP Build

Process

Automation in

SAP BTP. The

standard

scenario

supports all

flexible

workflow

capabilities.

Table 1.2 Comparison of Different Workflow Capabilities Available in SAP

S/4HANA Cloud, Private Edition, and SAP S/4HANA Cloud, Public Edition

1.2 Workflows in SAP Business

Technology Platform

Organizations can build, automate, and manage workflows

in a cloud environment with the help of SAP Workflow

Management, a cloud-native service offered by SAP. It offers

a low-code/no-code approach, allowing both business users

and developers to create, alter, and automate workflows

without having substantial coding experience.

While SAP Workflow Management is a powerful tool for

automating and managing workflows in a cloud

environment, like any technology, it has some limitations as

well such as handling complex workflows, complex

integrations, performance, handling high data volumes,

offline support, automation, and so on. In addition, it was

found that the learning curve is high in practical cases. SAP

has announced the retirement of SAP Workflow

Management and has introduced a more modern,

comprehensive, and “citizen friendly” tool called SAP Build

Process Automation. The key differences between SAP

Workflow Management and SAP Build Process Automation

are summarized in Table 1.3.

SAP Workflow

Management

SAP Build Process

Automation

Requires programming

knowledge and therefore

more of a pro-code

solution

Truly a no-code solution that

uses visual programming

friendly for citizen developers

SAP Workflow

Management

SAP Build Process

Automation

Needs experience in the

pro-code tool

SAP Business Application

Studio to design, develop,

and deploy

Easy to design, develop, and

deploy through the integrated

build lobby

SAPUI5-based start and

task UI

Simple forms easily created

using the no‐code forms with

SAP Build Apps and SAPUI5

used for more complex forms

Uses untyped interfaces Uses typed interfaces and

data types

Local My Inbox at the

subaccount level

SAP Task Center: one inbox for

all workflow tasks

Different versions for

artifacts in the same

project

One version for all artifacts in

a project

Requires different

monitoring applications

for different artifacts used

in the solution

Integrated monitoring of all

project artifacts

Needs separate license of

SAP Intelligent Robotic

Process Automation to

handle automation

Automation capability

integrated and handled

through automation artifact

SAP Workflow

Management

SAP Build Process

Automation

Requires additional SAP

Build Work Zone standard

license

SAP Build Work Zone included

for SAP Build Process

Automation usage

Table 1.3 Comparison between SAP Workflow Management and SAP Build

Process Automation Capabilities

Because SAP Workflow Management capability has been

replaced with SAP Build Process Automation, the direction

forward for SAP Workflow Management customers is to build

new workflows in SAP Build Process Automation. Existing

workflows built in SAP Business Application Studio can be

consumed in SAP Build Process Automation. SAP has

provided some migration options. However, there are some

constraints in these migration options. While the SAP

Workflow Management solution was available in SAP’s own

data centers (for Neo) and various hyperscalers (for Cloud

Foundry), SAP Build Process Automation is available only in

limited Cloud Foundry data centers.

Let’s take a quick look at the process of moving to SAP Build

Process Automation, as follows:

Workflows

Though the ideal solution would have been to get the

existing workflows developed using SAP Workflow

Management converted easily, unfortunately it isn’t

possible. Due to a different internal architecture, existing

workflow models won’t be converted automatically into

the process builder in SAP Build Process Automation;

rather, the new workflows should be built in SAP Build

Process Automation. Workflows built in SAP Business

Application Studio, however, can be modified in SAP

Business Application Studio and deployed to SAP Build

Process Automation.

Business rules

Business rules projects from an SAP Workflow

Management subaccount have to be imported into an SAP

Build Process Automation subaccount and need to be

redeployed as rule services in an SAP Build Process

Automation subaccount. The user and role assignments

within the SAP Build Process Automation subaccount will

also be needed for further modification, deployment, and

management of these rules. The business rules directly

deployed to SAP S/4HANA need to be recreated as

projects in the SAP Build Process Automation subaccount

before they can be used.

Process visibility scenarios

The visibility scenarios from the SAP Workflow

Management service need to be imported into a business

process project and then be redeployed. Once imported

successfully, they can be adjusted just like the visibility

scenarios created as part of the business process project

in SAP Build Process Automation.

Chapter 18 is dedicated to both SAP Workflow Management

and SAP Build Process Automation where you’ll see the

components of both solutions in more detail.

1.3 Workflow Development Tools

We’ll now briefly talk about the workflow development tools

used for the three types of workflow discussed in the earlier

sections: classical workflow, flexible workflow, and SAP Build

Process Automation. We’ll discuss the toolset used in these

types of workflows, as well as the BRFPlus tools here.

BRFplus is heavily used in the decision matrix and agent

determination of workflows.

1.3.1 Tools for Classical Workflow

Classical workflow uses several development tools, which

remain mostly unchanged with on-premise SAP S/4HANA,

SAP S/4HANA Cloud, and SAP S/4HANA Cloud, private

edition. In SAP S/4HANA Cloud, public edition, the classical

workflow isn’t available as a development option, so our

discussion in this book will always refer to on-premise SAP

S/4HANA and SAP S/4HANA Cloud, private edition, in the

context of the classical workflow. Following are some of the

commonly used definition time and runtime tools in classical

workflow:

Workflow Builder

This is the tool used to create a workflow definition. A

workflow definition describes the workflow process and

consists of the following:

Basic data

Information about triggering events

Initial values

Containers

Bindings

Workflow Builders may be accessed directly by using

Transaction SWDD or using Transaction PFTC (select a

multistep task or workflow template ID), followed by

selecting the Workflow Builder button on the Basic

Data tab. You can also access Workflow Builder from

menu path Tools • Business Workflow • Development

• Definition Tools • Workflow Builder. Details of

designing a workflow via the Workflow Builder can be

found in Chapter 4. Figure 1.2 shows a view of the

Workflow Builder in SAP with different development and

navigation options:

 Information Area: Displays the current workflow,

version, and status information.

 Navigation Area: Allows you to navigate between

different steps in the workflow.

 My Workflow and Tasks toolbox dropdown with

multiple options: Allows you to switch between

various options such as Workflow Containers, My

Workflow and Tasks, Step Types That Can Be

Inserted, and so on.

1

2

3

 Message area with navigation objects: Displays

warning and error messages after the syntax check

and allows the user to navigate to the step with the

issued message.

Figure 1.2 View of Workflow Builder with Different Development

and Navigation Options

 Graphical Model: Displays the graphical workflow.

 Step Selection: Displays the step types that can

be created in the workflow.

Business object builder and class builder

These two tools are used to develop the business object

layer of the workflow definition. The business object

builder can be accessed via Transaction SWO1 and the

class builder via Transaction SE24. Both these

transactions enable the developer to build the methods

behind the tasks and activity steps of a workflow. Details

of the business object repository (BOR) builder and class

builder in the context of workflow development may be

found in Chapter 3.

4

5

6

Tasks and task groups

This tool may be accessed via Transaction PFTC and is

used to define the various attributes of a task definition

such as the basic data, which includes the object method

details and task attributes along with binding, task long

text, container definition, triggering events, terminating

events, and default rules. The same transaction may be

used to access a workflow definition as well. Here, the

Basic Data tab captures the workflow title text along with

a link to the Workflow Builder. Additional tabs include

details on long text, container definition and triggering

events. Further details on this tool can be found in

Chapter 3, Section 3.3.

Rules

Rules are one of the primary mechanisms of agent

determination in workflows. The rule builder is a tool that

may be accessed via Transaction PFAC. It provides the

option to define a rule using various options such as

responsibilities, organization structure, function module,

and so on. Depending on the selected category you can

enter an appropriate object, define container elements to

be used in the rule, and add long texts.

Organization management

If you want to integrate the HR organization structure with

your agent determination process, then you need to

maintain the organization structure for workflow. This can

be done through the organization plan maintenance tools

via Transaction PPOSW and its variants.

Events

Similarly, there is a list of tools for maintaining the event

creation and event linkage for a workflow. This includes

event creation via change documents, status

management, Transaction NACE output control, and HR

master data changes. These event-related tools can be

accessed via menu path Tools • Business Workflow •

Development • Definition Tools • Events.

Test workflow

Transaction SWUS can be used as a testing tool for

workflows. In this transaction, you can trigger a workflow

manually without the use of events after populating the

required container elements. Figure 1.3 shows an example

of single testing a workflow via Transaction SWUS.

Figure 1.3 Example of Workflow Single Testing via Transaction SWUS

Workflows for object

Another commonly used runtime monitoring tool for

workflows is Transaction SWI6, which lets you find

workflows based on the leading object instance. Here, you

must enter the BOR or ABAP class Object Type and the

Key field(s). Additional filters include the workflow status

group in the Selection variant field (Active, All

Instances, and Completed), Task ID, and Selection

Period. This tool is pretty useful when you don’t have an

easy way to directly find the workflow log for an

application object. Figure 1.4 illustrates sample selection

criteria, and Figure 1.5 shows the output of the query from

Transaction SWI6.

Figure 1.4 Sample Selection Criteria for Parked Journal Entry Approval

Workflow Search Based on Document Key

Figure 1.5 Sample Output of Transaction SWI6 with Details of Workflow

Triggered for a Parked Journal Entry Document

1.3.2 Tools for Flexible Workflow

In addition to classical workflow transactions, SAP provided

new tools for flexible workflow, which are listed in Table 1.4.

Tool Details

Transaction

SWDD_SCENARIO

This is a new transaction in SAP

S/4HANA used to check all standard

scenarios and create new flexible

workflow scenarios.

Manage

Workflows app

Business process consultants/functional

consultants use this SAP Fiori app to

manage workflows and create

templates for required scenarios as and

when required.

Manage

Workflow

Scenarios app

This is another important app that is

used to check scenario definitions and

import/export scenarios.

Table 1.4 Flexible Workflow Toolset

You can find all the details about these tools in Chapter 14

and Chapter 16.

1.3.3 BRFplus Development Tools

BRFplus isn’t a direct workflow building tool, but it’s now

heavily used for any decision matrix and agent

determination. Therefore, we’ve included the BRFplus

toolset as a workflow supporting component development

tools.

The development tools of the BRFplus are under the

dedicated dropdown option in the BRFplus workbench,

which you can see in Figure 1.6. These tools are available in

the expert mode of the layout, which can be accessed via

the Personalization menu. The layout of the BRFplus

workbench is discussed in detail Chapter 10.

Figure 1.6 Development Tools

Let’s look at each of the development tools available:

Application Administration

This is a powerful tool to clean up the database and

ensure that only the productive versions are available in

the system. There are multiple operations possible with

the tool on any given application. Figure 1.7 shows the

possible operations.

Figure 1.7 Operations Possible via the Application Administration Tool

It’s important to note that all the operations performed

via this tool can also be performed via backend

Transaction FDT_HELPERS. This backend transaction has

many more operations than what you see in Figure 1.7, so

it’s the preferred option for any administrative actions.

Application Usage

This tool gives insights into what application is being used

in any given application or what application is using the

given application. The tool’s search page is depicted in

Figure 1.8.

Figure 1.8 Search Screen for the Application Usage Tool

Dictionary Usages Overview

This tool helps to provide the dictionary reference of the

data object types. This is a very helpful tool for

developers to ensure that the data types of the calling

application and the data type used in the application are

uniform, and there are no mismatches (see Figure 1.9).

Figure 1.9 Dictionary Usages Tool

In case of any mismatch, the tool also highlights the

specific data object with the red traffic light icon.

Trace

The processing logs of BRFplus application execution are

very important for issue analysis. The log generation and

depth of log capture is based on how the calling

application invokes the BRFplus API. There are three

levels of depth, as follows:

No trace

This is when the calling application doesn’t want any

traces to be captured in the system.

Lean trace

This is already part of the generated BRFplus code and

available for the processing logic, which directly results

in the outcome of the overall BRFplus function

execution.

Technical trace

This trace level is specifically required for detailed level

analysis and debugging purposes.

Simulation

This is just like any other test environment available for

testing the development. You must provide the inputs

(context), and then the function—the starting point of the

execution—is invoked, and all the processing logic is

executed to finally produce the result.

Note that there is simulation capability available for

expressions and actions as well, as depicted in Figure 1.10

and Figure 1.11.

Figure 1.10 Selection Screen of Simulation Tool

Figure 1.11 Simulation Outcome

Transport Analysis

This tool comes in handy for developers to ensure that

they have smooth movement of the transports, through

the complex before export and after import framework

applicable to the BRFplus objects. These frameworks kick

in for the validation as part of the overall transport

organizer framework.

The before export analysis of the transport can be done in

the source system where the application is built. Using

this tool, possible inconsistencies are highlighted in the

application that will lead to transport failure. Therefore,

it’s recommended to use this tool during releasing of the

transport from the source system to avoid.

The after import analysis comes in handy when the

BRFplus application is transported to the target system

but remains inactive. This tool highlights the causes of

unsuccessful transport imports and provides ways to

reimport the inactive objects once the fix is applied.

Web Service Generation/Function Module

Generation (RFC)

To make the business rules available for BRFplus

consumption for a third-party or legacy application, it’s

important to provide a relevant endpoint. The endpoints

can be made available via a web service. With a web

service, the additional steps of Transaction SICF activation

and Transaction SOAMANAGER configuration must be

done for making the endpoint reachable.

A similar step is available to automatically generate a

Remote Function Call (RFC) function module that

consumes the given BRFplus application inside it.

XML Export/XML Import

The export tool is used to convert the BRFplus application

into XML data. The same XML representation can then be

imported into another system using the import XML tool.

This tool comes in handy when the applications are to be

moved into different systems where no transport

connection is available.

1.3.4 Tools for SAP Business Technology

Platform

Workflow design and development in SAP BTP can be done

in two ways: One is based on the older SAP Business

Application Studio, and the other is the newest process

builder that is part of the SAP Build Process Automation

service. The former is more of a developer-based method

that required a bit of coding and the use of complex

scenarios, and the latter is a citizen developer–based low-

code/no-code tool. In addition, there are a few applications

that help both the developer and the operational user with

the much-needed view of monitoring the process and its

steps. Let’s look at these tools in a bit more detail:

SAP Business Application Studio

SAP Business Application Studio is an integrated

development environment (IDE) available as a service on

SAP BTP. It’s a browser-based application development

environment that encompasses the various tools and

resources required to develop all kinds of applications,

including workflows.

SAP Business Application Studio is the preferred

development tool for SAP BTP workflows when it comes to

designing complex developer-centric workflows because

of the following features:

Provided plug-ins and templates required to design,

develop, deploy, and debug workflows in SAP BTP

Feature-rich code editor interface to make the life of a

developer easy when it comes to developing workflows,

applications in SAPUI5, or services using Node.js

Built-in command-line interface

Build and deploy tools specifically for SAP BTP

Ability to create individual spaces for each type of

development, such as workflows, and contains its own

set of runtimes and tools required to develop such

types

Built-in integration with Git

SAP Business Application Studio needs to be subscribed to

as a service in the SAP BTP subaccount, and then it will

appear under Instances and Subscriptions in your

subaccount. You can access it by clicking on the listed

SAP Business Application Studio link under the

Subscribed Applications section.

You’ll see more of SAP Business Application Studio being

used in designing and developing workflows in Part III of

this book.

Process builder in SAP Business Process

Automation

While we introduced SAP Business Application Studio as a

tool for hard-core developers, there was a necessity to

provide citizen developers with a low-code/no-code tool to

rapidly design and develop workflows in SAP BTP. The

answer to this quest is the process builder, which is part

of the SAP Business Process Automation service in SAP

BTP.

Using the process builder browser-based cloud tool

integrated to SAP Build Process Automation service,

citizen developers can develop workflow processes

incorporating automation scenarios, with just a few clicks

of the mouse. Compared to SAP Business Application

Studio, which requires writing code to achieve many

tasks, process builder in SAP Build Process Automation is

more intuitive and doesn’t need coding at all. Most of the

build part is taken care of by just dragging and dropping

various controls and binding them to a data variable. With

the process builder, you can create artifacts such as the

following:

Workflows

Automation scenarios

Simple forms and approval forms

Decision and rules

Visibility scenarios

To access the process builder, you can navigate to the tool

after you create a new project in the Lobby screen of the

SAP Build Process Automation service by just clicking on

the project name. You’ll see more about how to create

workflows using the process builder in Part III of this book.

You just saw the two major tools for designing and

developing workflows in SAP BTP. Now let’s talk about a few

other key tools that help in the administration of the

workflows that have been developed using these tools. From

the SAP Build Process Automation Lobby screen, you’ll see

an option called Monitor which hosts a bunch of SAP Fiori

apps that will help you with administering and monitoring

your workflow processes, as follows:

Process and Workflow Instances

This app provides a view of all the workflow instances that

are running, on hold, in error, completed, or canceled. It

also gives the metadata details of the process such as

started date, started by, instance ID, definition, and so on.

The workflow logs that describe the various steps

traversed so far are also provided, along with the context

data. If the process errored out in some step, the log

provides the details of the error in the step that failed to

execute.

Process and Workflow Definitions

In this app, you can see the deployed workflows

developed using either SAP Business Application Studio or

the process builder. It shows the ID and deployed version.

You can perform the following actions in this app:

Show Instances: After selecting a process ID, click

Show Instance to go to the Process and Workflow

Instances app while filtering the instances with the

selected ID.

Start New Instance: Start a new instance of the

selected workflow by entering the necessary starter

data payload in JavaScript Object Notation (JSON)

format.

Download Model: Download the process model that

can be used later to deploy to another subaccount.

Triggers

In this app, you can view the triggers that have been

created while designing the workflows. A trigger is

basically a REST API call that delivers the initial data

payload to trigger/start the workflow from an external

source. In this tool, you can view the trigger with the API

endpoint and the required data payload in JSON format.

You can provide the information to the triggering source

system where this will be configured, or you can use this

to test the workflow using a REST client such as Postman.

You can also add and delete the triggers from here.

1.4 Identity and Access

Management

Some specific SAP security roles are required for workflow

developers and administrators. The workflow can be

developed in both SAP S/4HANA and SAP BTP, so we’ve

discussed the specific roles required in both of these

applications. We’ll discuss first the roles needed in SAP

S/4HANA for the developer, administrator, functional

configurator, and end user. Then, we’ll share a similar

viewpoint for SAP BTP.

1.4.1 Roles and Authorizations in SAP

S/4HANA

While working with SAP Business Workflow, one of the

important aspects is corresponding roles and authorizations

required to develop, configure, test, and execute the

workflows. In this section, we’ll discuss what corresponding

authorizations will be given based on the work to be done

related to workflows.

There are four primary types of users who are required to

have these authorizations based on their roles:

Workflow developer

These are the users who are primarily responsible for

workflow development. Usually, S_DEVELOP authorization is

required to do development-related work. Additionally,

following are some basic workflow development–related

transactions that workflow developers should have access

to: Transaction PFTC, Transaction SWDD, Transaction

SWDD_SCENARIO (for flexible workflow), Transaction

SWO1, Transaction SWI2_FREQ, Transaction SWI1,

Transaction SWEL, Transaction SWEC, Transaction SWE2,

Transaction SBWP, and so on. Apart from other regular

development-related authorizations, you need to have

some OData-related authorizations to access different

OData services and some specific SAP Fiori apps primarily

for flexible workflow development (see details of this in

SAP Note 3100365).

Workflow administrator

This is more toward Basis-related activities where initial

one-time system activation and configurations related to

workflow are required. Some of the activities are also

related to workflow monitoring and administration.

Following are the primary roles and authorizations

required here:

EXX_BC_SAP_ALL_RESTRICTED: All authorization without Basis

SAP_BC_BMT_WFM_ADMIN: Administrator for SAP Business

Workflow

SAP_BC_BMT_WFM_DEVELOPER: Developer for SAP Business

Workflow

SAP_SWFMOD_ADMIN: Workflow modeler administrator

SAP_WF_ADMINISTRATION: SAP Business Workflow work for

administrator

Some of the specific transaction codes for which access

should be given are Transaction SWNCONFIG (Extended

Notification Configuration), Transaction SWU3 (Automatic

Workflow Customizing), Transaction SWWCOND_INSERT

(Schedule Background Job for Work Item Deadline

Monitoring), Transaction SWWCLEAR_INSERT (Schedule

Background Job for Clearing Tasks), Transaction SCOT

(Configuring Email), Transaction SOST (Checking Email),

and so on.

Workflow-related functional configuration

This is more of a functional configuration role, but it’s

related to workflow. For example, to configure standard

classical workflow for vendor invoices for park and post

workflow, apart from workflow technical configuration,

there are financial configurations required using

Transaction SPRO menu path Financial Accounting •

Accounts Receivable and Accounts Payable •

Business Transactions • Make and Check Settings

for Document Parking. Similarly, to configure the

flexible workflow for purchase requisitions, you need to

have authorization for the Manage Workflows for Purchase

Requisitions app in SAP Fiori.

Workflow end users

These end users will be executing different tasks related

to workflow from their inbox. From SAP GUI, Transaction

SBWP access is given for the My Inbox app access.

However, the My Inbox app access will be given if no SAP

GUI access is given for any end user to execute the

corresponding workflow tasks. Apart from this, the other

corresponding business-related roles will be assigned

based on the business area. For example, if some end

user is responsible for approving the purchase requisitions

tasks, then corresponding purchasing roles will be given

to approve the requisitions; if some end user is

responsible for approving the invoices, then that business

role will be given; and so on.

1.4.2 Roles and Authorizations in SAP

Business Technology Platform

In SAP BTP, roles and authorizations are essential for

ensuring proper access control, security, and governance

over workflow-related activities both in SAP Workflow

Management and SAP Build Process Automation. While this

topic will be covered in detail in the respective chapters,

here’s an overview of the authorization process involved in

SAP Workflow Management and SAP Build Process

Automation.

There are two types of roles: global and instance level.

While the global roles give permissions for all workflow

definitions, instances, and tasks, roles at the instance level

control the activities around a specific instance of a

workflow, as follows:

WorkflowManagementBusinessExpert

This role collection enables discovery and importing of

predelivered live process packages, and configuring

process variants, decisions, and visibility scenarios within

these live process packages. It also enables viewing,

creating, editing, deleting (draft version), and activating

visibility scenarios.

WorkflowManagementAdmin

This enables viewing, exportng, and importing packages;

monitoring workflows; viewing workflow definitions and

instances; downloading workflow models;

suspending/resuming workflow instances; retrying failed

instances, and modifying/overwriting the workflow

context. This also handles the authorization to view active

visibility scenarios, trigger the processing of data, clear

existing processed data, and view information and errors

related to the processing of data. Pushing events and

viewing acquired events and the related errors are also

covered by this role collection besides managing and

deploying rules.

WorkflowManagementDeveloper

This role collection enables actions such as view, create,

edit, activate, and delete (draft version) live process

packages, workflows, business rules, and visibility

scenarios.

In addition, fine-grained authorization can be controlled in

roles for individual capabilities such as workflows, business

rules, and process visibility. Custom role collections can be

created by adding these additional roles from capabilities

such as workflows, business rules, process visibility, and

workflow management. These are covered in detail in their

respective chapters.

Like SAP Workflow Management, access to perform relevant

activities are controlled through a wide range of roles and

role collections in SAP Build Process Automation. Some of

the key role collections are as follows:

ProcessAutomationAdmin

Manages the process configuration, permissions, and

authorizations within SAP Build Process Automation.

ProcessAutomationDeveloper

Manages the creation, editing, and publishing of individual

processes and automations within SAP Build Process

Automation.

ProcessAutomationParticipant

Participates in active SAP Build Process Automation

processes.

In addition, granular control can be enabled through roles

for the individual capabilities such as SAP Intelligent Robotic

Process Automation roles, SAP Workflow Management,

process visibility, business rules, and workflows. Details of

these roles are covered in their respective chapters.

1.5 Summary

Workflow management is a key capability that has been part

of SAP ERP and has continued into SAP S/4HANA and SAP

BTP. The core capability of workflow management has

remained the same though the internal architecture evolved

over time between these products.

Workflow management in SAP ERP facilitates the

automation of business processes by assigning assignments

and approvals to the proper users in accordance with

specified criteria. It has tools for developing workflows,

processing tasks, and triggering workflows based on events,

such as workflow builder (Transaction SWDD) and Business

Workplace (Transaction SBWP). SAP ERP’s workflow

management is primarily focused on process automation

within the SAP ERP system, even if it offers necessary

automation capabilities.

Workflow management in SAP S/4HANA was improved with

more sophisticated features. Although SAP S/4HANA adds

SAP Fiori interfaces for task processing, the workflow builder

is still used to develop workflows. This enhances the user

experience. SAP S/4HANA also offers a more simplified and

integrated workflow management strategy across many

modules and business segments. SAP S/4HANA brings the

flexible workflow capability that is easily configurable and

can be set up by business users or functional process

consultants. It’s built on top of SAP’s classical workflow

engine and tightly integrated with SAP Fiori and My Inbox.

This provides a low-code/no-code platform for easy workflow

setup.

However, the new workflow capability didn’t stop here. SAP

brought an intelligent workflow capability that can span

multiple enterprise-binding applications to deliver end-to-

end business processes on SAP BTP. It can consume new

technology such as artificial intelligence and robotic process

automation in a consumable architecture.

2 Introduction to Classical

Workflows

This chapter introduces the details of classical

workflows, focusing on standard SAP-delivered

workflows. As classical workflows play a significant role

in building workflow solutions in SAP S/4HANA, this

chapter is required for understanding and using

classical workflows in SAP S/4HANA.

This chapter introduces you to classical workflows—

workflows that use the SAP Business Workflow engine in SAP

S/4HANA. You’ll learn about standard, SAP-delivered

workflows, before configuring the SAP S/4HANA system to

work with SAP Business Workflow. The chapter describes

how to activate standard workflows and maintain agent

assignments. You’ll then learn to prepare the system for the

SAP Business Workflow runtime. The chapter will also

discuss situations when it’s appropriate to use custom

workflows, rather than standard workflows.

2.1 Evolution of Classical Workflows

A classical workflow refers to the workflow management

functionality provided by SAP Business Workflow, which is

introduced in very early releases of SAP’s software, such as

SAP R/3. Starting from its inception to its current state,

classical workflows have undergone several iterations,

enhancements, and advancements. Let’s explore the key

milestones in the evolution of classical workflows:

Introduction of SAP R/3

The foundation of classical workflows can be traced back

to the introduction of SAP R/3 in the early 1990s. With SAP

R/3, businesses gained the ability to automate and

streamline their core processes, paving the way for the

future development of workflows.

SAP Business Workflow

In the late 1990s, SAP introduced SAP Business Workflow,

which served as the precursor to classical workflows. SAP

Business Workflow provided a framework for modeling

and executing business processes within the SAP system,

enabling companies to digitize their manual workflows

and enhance efficiency.

Release of SAP ERP

The release of SAP ERP brought further improvements to

classical workflows. SAP ERP expanded the capabilities of

workflows, allowing for more complex process modeling,

integration with other SAP modules, and enhanced user

interfaces for task management.

Integration with SAP NetWeaver

SAP NetWeaver, introduced in the early 2000s, played a

crucial role in the evolution of classical workflows. SAP

NetWeaver provided a platform for seamless integration

between different SAP systems and applications, enabling

workflows to span across various modules and systems

within an organization.

Web-based workflows

As internet technologies advanced, classical workflows

evolved to embrace web-based interfaces. This enabled

users to access and interact with workflows through web

browsers, enhancing the usability and accessibility of

workflow management. As part of this, classical workflows

supported SAP Enterprise Portal–based applications, and

SAP Business Workflow and SAP Enterprise Portal

integration was one of key aspects of this evolution

journey.

Integration with SAP Fiori

With the rise of SAP Fiori, a modern and intuitive user

experience for SAP applications, classical workflows

received a significant boost. SAP Fiori provided a

responsive, mobile-friendly interface for managing

workflows, making it easier for users to participate in and

monitor workflow processes on the go.

Cloud integration

As the adoption of cloud technologies increased, classical

workflows expanded into the cloud environment. SAP

Workflow Management, which runs on SAP Business

Technology Platform (SAP BTP) offers cloud-based

workflow capabilities, enabling organizations to leverage

the scalability, flexibility, and cost-effectiveness of the

cloud for their workflow needs.

Intelligent automation

In recent years, classical workflows have embraced

intelligent automation technologies, such as artificial

intelligence (AI) and machine learning. These technologies

enhance the capabilities of workflows by automating

decision-making, providing predictive analytics, and

enabling intelligent routing of tasks based on various

factors.

Over the years, as technology and innovation progressed

and with the introduction of newer SAP products and

features through this journey, SAP aimed to provide a

unified workflow solution that combines classical and cloud-

based workflow capabilities, offering enhanced flexibility,

scalability, and integration possibilities.

2.2 Standard Workflows

SAP standard workflows are preconfigured templates within

the SAP system that define a series of sequential steps

required to complete a specific business process. These

workflows cover a wide range of business functions, such as

purchasing, sales, human resources, finance, and more.

They are designed based on best practices and industry

standards, providing organizations with a solid foundation

for automating their processes. In the following sections,

we’ll discuss the details of how to search for standard SAP-

provided workflows and cover what the commonly used

standard workflows are.

2.2.1 Searching for Standard Workflows

Now you’ll see how to find standard workflows in an SAP

system (this can be either SAP ERP or SAP S/4HANA) via

standard Transaction SWDM (Business Workflow Explorer).

Here, you can search by using filters such as application

component, business object, and classes (including

methods).

Figure 2.1 illustrates Transaction SWDM (for business

application purchasing) where you can see the list of

workflow templates available in the Business Workflow

Explorer screen.

Figure 2.1 List of Workflow Templates in Business Workflow Explorer

You can search for standard tasks from table HRS1000, as

shown in Figure 2.2. Go to Transaction SE16 or Transaction

SE16N, and then use the following filter criteria: Std.object

type as “WS”, Language as “EN”, User Name as “SAP”,

and Object abbr. as “MM*” to find out all the standard

workflow templates in the material management area.

Figure 2.2 Selection Criteria to Fetch All the SAP Standard Workflow

Templates in the Material Management Area

Figure 2.3 shows the result of the selections you made in

Figure 2.2. It lists all SAP-provided standard workflow

templates in the material management area.

Figure 2.3 Results of the Preceding Selection Showing the Standard Workflow

Template in Materials Management

Note

You can search all standard tasks the same way using the

standard object type of “TS” in table HRS1000.

Let’s consider another way to search SAP-provided standard

workflows. Say you’re looking to find out all the SAP

purchasing workflows. Go to Transaction PFTC, provide Task

type as “Workflow Template”, and click the (F4) help of the

Task field. This will open a popup where you need to enter

the Search Term as “*PURCH*” and click the green

checkmark. In another window, you’ll see the results where

workflow Object name or object description contains the

word “PURCH”, and you can thus get a tentative list of

purchasing workflows. Figure 2.4 shows the list of

purchasing workflow templates from Transaction PFTC.

Figure 2.4 List of Purchasing Workflows from Transaction PFTC

Note

This will return both standard and custom workflows, so

you’ll need to determine which are standard workflows by

checking inside the workflow template.

2.2.2 Commonly Used Standard Workflows

SAP has provided a good number of standard classical

workflow templates in different functional areas such as

purchasing, finance, travel management, HR, and so on.

Table 2.1 lists some of the common standard classical

workflows that are used in different SAP S/4HANA

implementations.

Template

Number

Short Text

WS20000077 Workflow for Overall Release of Purchase

Requisition

Template

Number

Short Text

WS02000471 Workflow for Release of Purchase Requisition

Item

WS20000075 Workflow for Release of Purchase Order

WS20000078 Workflow for Release of Scheduling

Agreement

WS20000079 Workflow for Release of Purchase Contract

WS00800302 Workflow for Purchasing RFQ

WS20000050 Travel Request Workflow

WS20000040 Trip Approval Workflow

WS20001004 Workflow for Release of Incoming Invoices

WS10000051 Financial Accounting Park and Post Workflow

WS12300111 SAP Employee Self-Service/Manager Self-

Service General Leave Request Workflow

Table 2.1 Commonly Used Standard Classical Workflows

Note

The workflow template numbers given in the preceding

list may vary based on the SAP system version.

2.3 Configuring the SAP Business

Workflow System

Before you start testing any classical workflows in any SAP

system, you need to configure the SAP Business Workflow

system; for this task, the primary activity is Automatic

Workflow Customizing executed through Transaction

SWU3. This activity needs to be performed in each system

in the landscape manually, so it should be listed as one of

the cutover tasks.

Follow SAP Implementation Guide (IMG)/Transaction SPRO to

perform a system-wide initial workflow setup. Follow menu

path SPRO • SAP NetWeaver • Application Server •

Business Management • SAP Business Workflow •

Maintain Standard Settings. You’ll get the Automatic

Workflow Customizing screen as shown in Figure 2.5.

The system has provided an option to automatically set it up

with a click of a button. Click the button to automatically

set up the system for the workflow. You can then focus on

the items that can’t be set up automatically. You can also go

to individual items and change the value from whatever is

set up automatically. We’ll now go through some of the

items that may sometimes give you error or require you to

change the default setting. To execute individual items,

select the line item you want to execute, and click the

button.

Figure 2.5 Automatic Workflow Customizing

In the following sections, we’ll walk you through how to

maintain the runtime environment, definition environment,

and additional settings and services. You’ll also learn how to

classify tasks as general tasks.

2.3.1 Maintain Runtime Environment

The activities performed in this section must be executed so

that workflows can be executed. When you go to the

Automatic Workflow Customizing screen, only those

activities that currently have no errors are executed

automatically. The following activities can be performed

automatically:

Configure RFC Destination

Maintain System Administrator for Workflow

Maintain Active Plan Variant

Classify Decision Task as General

Document Generation/Form Integration

Maintain Time Units

Schedule Background Job for Missed Deadline

Schedule Background Job for Work Items with

Errors

Schedule Background Job for Condition Evaluation

Schedule Background Job for Event Queue

Schedule Background Job for Clearing Tasks

Schedule Background Job for Deleting Expired

Request (CP Workflow Integration)

Configure Remote Function Call Destination

If we carry out this activity automatically, the logical RFC

destination WORKFLOW_LOCAL_XXX (where XXX = client number)

is created if it doesn’t yet exist. The workflow runtime

engine always gets executed within one client, so this

logical RFC destination name provides a unique name. If this

logical destination doesn’t exist, the system automatically

creates this logical system.

The user WF-BATCH is assigned to this destination. If the WF-

BATCH user ID doesn’t exist, this activity is automatically

executed, and the current user is part of the SUPER user

group, then the WF-BATCH user ID is created with maximum

authorization of the current user who is executing it. It’s also

possible to manually execute this step, and a different user

ID and password can be maintained.

Note

Starting with SAP S/4HANA 1709, the workflow system

user WF-BATCH isn’t generated automatically anymore. The

workflow system user is called SAP_WFRT now instead of WF-

BATCH and must be created manually (refer to SAP Note

2568271).

The user maintained against the RFC destination required

role SAP_BC_BMT_WFM_SERV_USER and application-specific

authorization. Refer to SAP Note 1251255 on how to set up

the WF-BATCH user with a specific role.

It’ll be very difficult to get all application-specific roles. The

workflow can fail if WF-BATCH doesn’t have any specific

application authorization needed to execute the functions.

So it’s recommended to go with the SAP_ALL kind of

authorization for WF-BATCH. This is the heart of workflow

execution, so you should ensure that the WF-BATCH user id is

created with the SAP_ALL role before executing this step.

If you execute the Configure RFC Destination step, you’ll

get a success message, as shown in Figure 2.6.

Figure 2.6 Automatic RFC Destination Configuration

Starting with SAP S/4HANA 1805, a reference RFC

destination WORKFLOW_REFERENCE_XXX (where XXX = client

number) is also created with a trusted connection, which

avoids any issues with the synchronization of passwords

between the SAP_WFRT user and the WORKFLOW_LOCAL_XXX

destination. By using the trusted RFC relationship feature,

there is no need to maintain the password with the RFC

destination anymore because the password is only at the

user. The password of the system user SAP_WFRT can be

changed at any time without disruption of the RFC

execution.

Maintain Workflow System Administrator

The workflow administrator automatically gets the

notification if there is any error in the workflow. The

workflow administrator can be maintained at each workflow

or at the system level. You can maintain the workflow

administrator at the individual workflow level at the

workflow header. Click on the Basic Data button in

workflow builder or choose Goto • Basic Data, then go to

the Version-Dependent (Current Workflow Version)

tab, and finally the Agents subtab to set up the workflow-

specific system administrator. Figure 2.7 shows where to

maintain the system administrator at the workflow level.

Figure 2.7 Maintain the Workflow System Administrator at the Workflow

Level

The workflow administrator at the workflow level can be

defined as a work center, security role, rule, user ID,

organization unit, and so on, similar to any agent

determination procedure. It’s good practice to have a

business domain-specific workflow administrator and set it

up at the workflow level. This kind of structured approach is

defined where you have a high number of workflows. If you

have a very low number of workflows, then a couple of

people can be responsible for managing all the workflows.

In the system level workflow system administrator

maintenance, you don’t have all the flexibility to define the

workflow administrator dynamically. You’ll have some fixed

options such as work center, security role, user ID, and

organization unit. When you execute the task automatically,

the user who executes this task is assigned as the workflow

administrator. You should change this after automatic

generation.

It’s advisable to use any kind of HR organization unit, work

center, or security role for the workflow administrator. We

recommend going with the security role because it will be

easy to maintain in the future. If you go with the security

role, then there should be different roles for workflow

developer and workflow administrator. The workflow

administrator needs a few extra authorizations. So, only a

few people should have this access. In a live system, you

should make this configuration independent of security role

changes. For example, to maintain a different derivation

based on country, a dummy custom role can be created and

added to the template role. Whenever a new derivation

comes, it will include the custom dummy role, so the

workflow administrator configuration doesn’t need to be

changed.

The standard workflow system administrator must be

maintained in each client. If you’ve already maintained a

standard workflow system administrator (Transaction

SWDC_RUNTIME), it’s not overwritten by the automatic

execution of this activity.

Maintain Active Plan Version

Only one of the plan versions created in the system can be

active. This plan version (with its contents) is seen by the

workflow system as the only valid plan version. All SAP

workflows supplied are then in the plan version marked as

Active automatically.

If you carry out this activity automatically, 01 is set as the

active plan version. If you carry out the activity manually,

you enter the plan version that you want to use as the

active plan version in the Value abbrev. field in the group

PLOGI with the semantic abbreviation PLOGI, as shown in

Figure 2.8.

Figure 2.8 Manual Maintenance of the Active Plan Version

Classify Decision Task as General

Task TS00008267 (generic decision task) must be declared

as a general task. Like all SAP tasks supplied, the generic

decision task doesn’t have any possible agents as standard.

Follow these instructions to complete this task:

1. Carry out the activity.

2. Position the cursor on the generic decision task, and

choose Properties.

3. Choose General Task.

The generic decision task classification is one of the settings

made in automatic customization.

Document Generation/Form Integration

The tasks for processing documents (TS70008298, TS71007944,

TS71007945, TS71007945, TS71007946, and TS71007954) are declared

as general tasks. The tasks for processing forms (TS70008112,

TS70008113, TS70008114, and TS70008115) are also declared as

general tasks.

All users in the SAP system are allowed as possible agents

of these tasks. The agent restriction must be performed by

selecting responsible agents in the step definition. In

addition, check the KBA 3133006 - “Tasks (document

generation, forms) = not general” error message in

Transaction SWU3.

Maintain Time Units

Here, you can set the units of measurement and time that

are used by the SAP system. You (or the system) will

maintain three units of measurement: Dimensions, ISO

Codes, and Units of Measurement, as shown in

Figure 2.9. This needs to be changed only if there is a

requirement to overwrite the SAP-provided default values.

This can be done by executing Transaction SWU3 (Automatic

Workflow Customization) and selecting Maintain Time

Units.

Figure 2.9 Shows the Maintenance of Units of Measurement

Schedule Background Job for Missed Deadlines

Specify a time interval at which the background job is called

regularly. With each execution, the background job checks

whether new deadlines have been missed since the last

time it ran. Background job SWWDHEX is scheduled to process

the missed deadline. The deadline outcome won’t be

triggered without this batch job. By default, it’s scheduled

every three minutes. If you have too many workflows with

deadlines activated, then this job may have a performance

issue. So based on the number of deadlines, you may have

to change the job interval.

To successfully execute this activity, the Configure RFC

Destination activity must have been successfully

executed. Report RSWWDHEX is used, and documentation

for background job SWWDHEX can be found in SAP Note

1262519.

Schedule Background Job for Work Items with Errors

You use this activity to schedule monitoring and special

treatment for background work items that could not be

executed initially because of a temporary error in the

underlying object method. The job can be scheduled from

the Schedule Background Jobs SAP Business Workflow

option under Transaction SWU3.

These background work items with temporary errors are

then restarted automatically. The activity must also be

scheduled if the workflow system administrator is to be

notified automatically by mail in the event of application

errors and system errors.

Background job SWWERRE is scheduled to reprocess the

temporary error. By default, it will try three times in a 3-

minute interval. The job won’t consider a work item for

reprocessing after three times. Report RSWWERRE is used,

and documentation for background job SWWERRE can be found

in SAP Note 1676991.

Schedule Background Job for Condition Evaluation

The background job for checking the conditions for the work

item start and work item end is scheduled with the standard

parameters. To successfully execute this activity, the

Configure RFC Destination activity must have been

successfully executed.

Report RSWWCOND is used, and documentation for

background job SWWCOND can be found in SAP Note

1677053.

Schedule Background Job for Event Queue

The background job for the event queue is scheduled with

the standard parameters. If you execute the activity

manually, you can schedule the background job with your

own parameters. To do this, execute the Schedule

Background Jobs SAP Business Workflow step from

Transaction SWU3, and search for Technical Job Definition

name “SAP Workflow Event”. To successfully execute this

activity, the Configure RFC destination activity must

have been successfully executed. Report RSWEQSRV is

used. Figure 2.10 shows the job and its attributes for the job

related to the event queue.

Figure 2.10 SAP Background Job Related to the Event Queue

Schedule Background Job for Clearing Report

This background job for clearing work in the workflow

system deletes all job logs of the background jobs listed in

Table 2.2.

Job Name Details

SWWCOND Work item rule monitoring

SWWDHEX Work item deadline monitoring

SWWERRE Work item error monitoring

SWWCLEAR Clearing tasks in the workflow system

Table 2.2 Background Job Logs That Are Cleared When Job RSWWCLEAR Is

Executed

Report RSWWCLEAR is used. Following the execution of

workflow Customizing, the cleanup background job SWWCLEAR

must run just once per system but not in every client. After

scheduling, the background is executed once a day at 00:00

hours. To successfully execute this activity, the Configure

RFC destination activity must have been successfully

executed.

Schedule Background Job for Deleting Expired

Request (CP Workflow Integration)

This report implements the central workflow system job

SAP_WORKFLOW_CPWF, which runs in the business client if SAP

Build Process Automation instances exist on the database.

The report deletes finalized SAP Build Process Automation

instances from table SWF_CPWF_INST after a retention time that

is specified per entry in this table.

Tips

Starting with SAP S/4HANA 1709, the workflow system

user and workflow system jobs changed. The workflow

system user is called SAP_WFRT now instead of WF-BATCH. The

workflow system jobs start with SAP_WORKFLOW now and are

scheduled automatically by Transaction SJOBREPO

(Technical Job Repository).

If you upgraded from an older release to SAP

S/4HANA1709 or higher, refer to SAP Note 2568271.

If you have an issue where these jobs aren’t getting

scheduled automatically from Transaction SJOBREPO in

the SAP S/4HANA environment, see SAP Knowledge Base

Article (KBA) 2770337.

2.3.2 Maintain Definition Environment

Under this section, all the activities must be executed

manually as listed here:

Maintain Prefix Numbers

Check Number Ranges

Check Entries from HR Control Tables

Maintain Prefix Numbers

This step defines how the number will be allocated when

you create a workflow template, task, rule, or task group.

Standard objects (workflow tasks, standard tasks, etc.) are

identified with an eight-digit number. The last five digits of

this number are assigned automatically by the system. The

prefix number is used for the first three digits of this

number.

To guarantee unique identification, define a unique prefix

number for each system and client. Under this step from

Transaction SWU3 in the Maintain Prefix Numbers

section, you need to create new prefix numbers for the

corresponding SAP system and client. Figure 2.11 shows

how to maintain the prefix numbers for workflow and

organizational management.

The prefix number applies for the following objects:

Standard tasks

Task groups

Rules

The prefix should be configured only in the development

system and not the quality assurance (QA) or production

systems because the workflow templates/standard

tasks/agent rules should be created in the development

system and then imported to the follow-on systems by

transport requests. Therefore, it’s not necessary to change

the Edit Prefix Numbers node in Transaction SWU3 to

green in QA or production systems. See KBA 1910992 for

further information on this.

Figure 2.11 Maintain the Prefix Number for Workflow

Check Number Ranges

This routine check determines whether there is a number

range for workflow tasks (WF) and customer tasks (T).

Figure 2.12 shows the corresponding check under

Automatic Workflow Customizing.

Figure 2.12 Check Number Ranges in SAP Automatic Workflow Customizing

The status of this check may be Error if the client in

question was set up in a 2.X system using the client copy

program. This program must have been started in such a

manner that the content of all the human resources

management tables wasn’t copied.

If the check has the status Error, you can correct the error

as follows:

1. Use report RSCLTCOP to copy all the content of the T77*

tables (generic entry) from client 000 into the relevant

client.

2. Carry out the Customizing for personnel planning and

workflow again.

Refer to SAP Note 31621 for more information.

Check Entries from Human Resources Control Tables

The organizational management control tables must be

complete if the workflow system is to be functional. A check

is made to this effect if you carry out this activity. To solve

problems of this type, use report RHTTCP77, which is shown

in Figure 2.13.

Figure 2.13 Report RHTTCP77

If there are errors regarding the transport objects PDST or

PDWS, the relevant entries aren’t maintained in table SOBJ. You

can use report RHSOBJCH to rectify this later. Note that with

this error, the workflow is executable in the current system,

but crucial information isn’t transported in the event of

transports into test or production systems. In addition, refer

to SAP Note 31621.

These tables are usually supplied. If entries are missing or

problems can’t be solved, contact SAP or try to find the

relevant notes using SAP Service Marketplace.

2.3.3 Maintain Additional Settings and

Services

The activities performed in this section must be executed if

particular SAP Business Workflow functions are required.

When you go to the Automatic Workflow Customizing

screen, only those activities that currently have status Error

are executed automatically.

The following activities can be performed automatically:

Sending to objects and activating HR objects

Maintaining demo and verification environments

Following is the full list of items that are done under this

section:

Maintain Web Sever

Maintain Standard domain for Internet Mail

Activate Send to Objects and HR Objects

Maintain Demo and Verification Environment

Maintain Web Server

If you want to execute workflows that use WebFlow

functions, you have to define a web server for the SAP

system. For example, this is the case if the workflows to be

executed contain a web activity. Automatic execution of this

activity isn’t possible. Follow these steps to define the web

server:

1. Choose Tools • Business Workflow • Development •

Administration • Basic Settings • WebFlow •

Customizing Web Server.

2. On the Customizing Web Server: Change screen,

enter the address of your web server and, if applicable,

the port number. Optionally, you can enter another

service.

Maintain Standard Domain for Internet Mail

Questions can be created with respect to work items within

the workflow system. These questions can be answered

using an email to the relevant work item. The answers are

added to the work item’s attachments automatically. A

standard domain for the current system is required for this

function. Automatic customization isn’t possible for the

standard domain.

For more information, refer to the SAP Library, and choose

mySAP Technology Components • SAP Web

Application Server • Basis Services/Communication

Interfaces (BC-SRV) • Communication Interfaces (BC-

SRV-COM) • SAPconnect (BC-SRV-COM) • SAPconnect:

Administration • Default Domain.

Activate Send to Objects and HR Objects

If the workflow system is to send work items and mails to

business objects and organizational objects (positions,

organizational units, etc.) in Business Workplace, the

relevant functions must be activated. You activate them

centrally in the shared office settings of Business Workplace.

For more information on the shared office settings, refer to

SAP Library. Choose mySAP Technology Components •

SAP Web Application Server • Basis

Services/Communication Interfaces (BC-SRV) •

Business Workplace and Services (BC-SRV-OFC) •

Business Workplace (BC-SRV-GBT) • Administration of

the Business Workplace • Administration of the Send,

Folder and Office Functions • Shared Office Settings.

Maintain Demo and Verification Environment

The verification workflow and all demo workflows are

declared as general, which means they can be started by all

users. This is done as part of automatic customization in

Maintain Additional Settings and Services under the

Maintain Demo and Verification Environment section.

2.3.4 Classify Tasks as General

All the activities in this section declare SAP tasks or SAP

workflows as general tasks. When you go to the Automatic

Workflow Customizing screen, only those activities that

currently have the status Error are executed automatically.

If after performing automatic customization, the status is

still Error, apply SAP Note 3119858 and perform the

automatic customization again.

The following activities can be performed automatically:

Test Workflows

Customizing with Workflow

IDoc Interface

Unit Test

SAPphone

Classify Scenario Tasks (Flexible Workflow) as

General

Processing of Replies to Appointment Request

Figure 2.14 shows the details of this section and how to

perform these steps.

Figure 2.14 Classify Tasks as General

Test Workflows

All test workflows are declared as general, which means that

they can be started by all users. The test workflows are in

task group TG70000020. This step is performed through

automatic customization.

Customizing with Workflow

The workflows are in task group TG74500043. This step is

performed through automatic customization.

IDoc Interface

The IDoc processing SAP workflows located in task group

TG74500044 are declared as general, which means they can be

started by all users. This step is performed through

automatic customization.

Tips

Don’t set this to active as it will create a huge amount of

unwanted work items that will eventually lead to massive

performance issues! Instead, see KBA 2031151. If you’ve

already set this to active by mistake and are facing

performance issues when opening Transaction SBWP, see

KBA 2164759 for instructions on how to remove the work

items from users’ inboxes.

Unit Test

The workflows for the unit test contained in task group

TG56400001 are declared as general, as shown in Figure 2.15,

which means they can be started by all users.

Figure 2.15 Task Group: Maintain Agent Assignment

SAPphone

The SAP tasks and SAP workflows that have SAPphone

functions and are in task group TG74500045 are classified as

general. All users in the SAP System are allowed as possible

agents. The agent restriction for the SAP tasks must be

performed by selecting responsible agents in the step

definition. This step is performed through automatic

customization.

Classify Scenario Tasks (Flexible Workflow) as

General

For flexible workflows, all task used by the workflows and

the workflows themselves must be declared as general

tasks.

Processing of Replies to Appointment Request

The standard tasks in the workflow templates for processing

replies to appointment requests are declared as general

tasks. All SAP system users can be possible agents of these

tasks. The tasks involved are TS74508419, TS74508420,

TS74508422, TS74508423, TS74508424, TS74508433, TS74508435,

TS74508441, and TS74508469 in workflow template WS74500804.

The tasks and the workflow template are contained in task

group TG74500047. This step is performed through automatic

customization.

2.4 Activating and Deactivating

Standard Workflows

As you’ve seen, SAP provides a lot of standard classical

workflows. The next step is activating or deactivating these

workflows. In the previous section, you learned the details of

activating system-related configurations for related

workflows. Here, you’ll see how to activate this for a specific

standard workflow. This is done through Transaction SWE2

(Event Type Linkages).

The majority of standard workflows are triggered through

standard events related to some standard business objects

or classes. When a particular event occurs in the system

(e.g., release of a purchase order) the corresponding event

gets triggered, and this is the source of the event. When a

particular receiver (in our case, the standard workflow)

receives this event, the corresponding workflow gets

triggered. This transaction basically makes a link between

this event source and the event receiver. When this event is

linked, then the corresponding workflow gets activated; if

the link gets broken, then the workflow is deactivated.

Let’s see an example of how this is done. Say you need to

activate standard workflow WS20000075 in the system. If you

open the Triggering events tab of this standard workflow

using Transaction PFTC, you’ll see that this workflow gets

triggered when event RELEASESTEPCREATED is triggered for

standard business object BUS2012—this is the source of the

event (see Figure 2.16).

Figure 2.16 Triggering Event of Standard Purchase Release Workflow

Next, open Transaction SWE2, and browse business Object

Type BUS2012, Event RELEASESTEPCREATED, and

Receiver Type WS20000075. Select the Linkage

Activated checkbox to complete the activation of this

workflow. Figure 2.17 shows the event linkage between the

workflow and the business object event.

Figure 2.17 Event Linkage between Source Event RELEASESTEPCREATED

(BUS2012) and Receiver Workflow Type WS20000075

Tips

If you want to add a custom check to decide whether the

workflow should trigger or not, you can use the Check

Function Module field. To determine the workflow

template dynamically, you can use the Receiver Type

Function Module field here. The details of these two

function modules are shown in Figure 2.17.

2.5 Configuring Agents for Standard

Workflows

In this section, you’ll see how to configure agents for SAP

standard classical workflows. There are different agent

determination techniques for workflows. However, in the

majority of standard classical workflows, the agents are

determined using standard rules. But it’s always necessary

to check the agent determination technique first on any

standard workflow. Let’s see the details using the standard

purchase order release workflow WS20000075.

Here, if you go with the standard task TS20000166, it

basically sends the worktime to the corresponding agent

who will release the purchase order. From the Default rules

tab, you can see the standard agent is 20000027, as shown

in Figure 2.18.

Figure 2.18 Standard Rule 20000027 Determines the Agent of Person

Responsible for PO Release

For some cases, agent determination is done through

functional configuration; for example, for the Release of

purchase order standard workflow, the agent

determination is done through the purchase release group

(Grp) and release code (Code) via configuration in a

specific path under Transaction SPRO (see Figure 2.19).

Figure 2.19 Sample Agent Determination Based on Purchase Release Group

and Release Code

However, if you want to add custom logic to determine

agent using this rule, then there is a user exit

(EXIT_SAPLEBNF_005) given inside function module

ME_REL_GET_RESPONSIBLE (of the corresponding rule AC20000027),

which can be leveraged.

Note

In this case, SAP has configured this customer exit to be

triggered only when the Role resolution for workflow is

set to 9. This has to be maintained for the release

group/release code combination in release code table

T16FC (also maintainable through Transaction SPRO).

You’ll learn the details about agent determination

techniques in Chapter 6.

2.6 When to Develop a Custom

Workflow

SAP provides a good number of standard workflows under

different business application components. As an SAP

technical consultant designing the requirements of a

workflow process, the first target is to leverage SAP-

provided workflows instead of developing something

custom. However, not all requirements can be met using

standard workflows; in some cases, you need some

enhancement of the standard workflow or, at the end, may

need to go for a fully custom solution.

First, we need to analyze the workflow business requirement

and try to find out whether SAP has provided any standard

business object (or class). If no such standard object is

found, then we need to develop a custom workflow from

scratch. If some standard business object is found, then we

need to check whether SAP has delivered any standard

workflow related to this business object. If no such workflow

is found, then we need to build a custom workflow

leveraging the corresponding standard business object. But

if any standard workflow is found, then we first need to see

whether the requirement can be met as is or with some

enhancement requirement. If proper enhancement isn’t

possible, then as the last option, we need to copy the

standard workflow and change it accordingly based on the

requirements. Figure 2.20 shows the guideline flow chart for

this process.

Figure 2.20 Flow Diagram Depicting When to Create a Custom Workflow

2.7 Summary

In this chapter, you’ve seen details about classical

workflows. Though there are other workflows (e.g., flexible

workflows and SAP Build Process Automation) in SAP

S/4HANA, classical workflows are still significant in solution

workflow requirements to a great extent. You’ve seen how

classical workflows evolved from the very early stages of

SAP R/3 to SAP S/4HANA and with multiple product

evolutions and features. SAP has provided a good number of

standard classical workflows, and we discussed how to

search these workflows and what some of the commonly

used standard classical workflows are in different ERP

implementations. Then, we showed the details of system

configurations from a readiness perspective, including how

to activate standard workflows, how to configure agents,

and so on. At the end, you saw that, in some cases, you

may need to develop custom workflows. A flow diagram was

included to show in what situations you should go for it.

3 Building Methods and

Tasks

The building blocks of a workflow step are tasks and

methods. This chapter begins with the concept of

methods and tasks, exploring two approaches to

building the code behind the workflow—the classic

business object repository (BOR) approach and the

ABAP class approach. You’ll learn about building

methods with both options in detail, including how to

work with the parameters, handling exceptions, and

performing unit testing. Finally, we’ll discuss settings

and options for standard tasks used in the workflow

activity steps.

SAP Business Workflow was developed using an object-

oriented approach in the early SAP R/3 days. During those

days, object-orient programming (OOP) concepts weren’t

yet introduced by SAP. So, SAP developed a framework

using business objects that gave the flavor of OOP to

workflow, although it wasn’t object oriented in a true sense.

Later, as SAP introduced OOP in ABAP, SAP Business

Workflow also adapted to a parallel OOP-based approach

using ABAP classes and methods. Since then, SAP Business

Workflow supports both the business object repository (BOR)

approach as well as the ABAP class approach for building

the core business logic inside a workflow. Most existing

standard workflows are built on the BOR programming

approach, whereas new SAP add-on products, including

flexible workflow, have moved toward the ABAP class

approach.

In this chapter, we’ll explore both programming techniques

for workflow in detail. In both approaches, an activity step in

a workflow needs a task definition, and a task definition

calls a method to execute its processing. Tasks may be

defined as dialog or background (see Section 3.1.4 for more

details), and in turn the corresponding methods also

perform actions in dialog (involving user interaction, i.e.,

agents) or in background (database query or update

operations). Methods use parameters to read data from the

task container and return data back to the task container,

which in turn may be returned to the workflow container via

binding (see Chapter 4, Section 4.4, for more details on

containers and bindings).

Workflows make use of one or more object instances to work

with the business data during its execution. However, all

workflows use a primary object—often called the driving or

leading business object—to carry out the various steps

involved in the process flow. This leading business object

usually receives the instance data from the triggering event

via binding. Of course, workflows may be started even

without a triggering event. In those cases, the leading

business object must be instantiated by the workflow

initiator (usually via ABAP code) and bound to the workflow

or task container. Each BOR object or ABAP class instance

uses one or more attributes to readily access data from the

instance on work item texts, descriptions, and so on. These

attributes may also be read inside the task methods if

required. Apart from methods and attributes, BOR type or

ABAP class definitions also define events that may be used

to trigger workflows or tasks, terminate work items, or

create event or wait steps directly inside a workflow. In the

next section, we’ll study each of these components in detail

from the perspective of a business object definition.

3.1 Business Object Repository

Approach

A business object type definition is a framework in SAP

S/4HANA that allows you to work with the data for an

application. The business object layer acts like an interface

above the database layer and helps in managing the data

record for an application transaction; for example, the

business object type for managing sales order data is

BUS2032, and for purchase orders, it’s BUS2012. A business

object is the runtime instance of the object type definition.

The definition of a business object type consists of key

fields, attributes, methods, and events. Object type

interfaces help group some common attributes, methods,

and events, making them available in the object type

definition. Figure 3.1 illustrates the basic components of an

object type definition via Transaction SWO1.

Figure 3.1 Definition of a Business Object Type with Key Fields, Attributes,

Methods, and Events

In the following sections, we’ll create a custom BOR object

type and add some components to it. We’ll go through the

steps for creating each type of component in detail. First,

however, we’ll walk you through each element of a business

object type definition.

3.1.1 Business Object Type Definition

The business object type definition integrates with the

Business Application Programming Interface (BAPI), wherein

specific methods of the object type are built on BAPI, calls

and the object type/method names are linked to the BAPI

Explorer as well. For instance, if you’re working with sales

orders, then you can search for all BAPIs related to sales

orders in the BAPI Explorer. In Figure 3.2, and Figure 3.3,

respectively, you can see that the sales order object is

linked to business object type BUS2032, and each BAPI

under that object type, is nothing but a method.

Figure 3.2 Sales Order Business Object Type from BAPI Explorer

Figure 3.3 Method ChangeFromData under SalesOrder Object Type Showing

the Link to BAPI

You can view the same methods from Transaction SWO1 for

business object type BUS2032, as shown in Figure 3.4.

Figure 3.4 View of Methods under a Business Object Type Definition in

Transaction SWO1

If you double-click on a method and navigate to the ABAP

tab, you can see the link to the BAPI call as an application

programming interface (API) function from the method, as

shown in Figure 3.5.

Figure 3.5 Method Definition in a Business Object Type Showing the BAPI Call

as an API Function

A business object type definition (often referred to as a BOR

type) in SAP consists of the following components (not all

are mandatory for an object type definition):

Interfaces

Interfaces are similar to an object type definition, which

are used for grouping other interfaces, attributes,

methods, and events. Interfaces don’t have any key

fields, so they can’t be instantiated. They are used for

grouping and adding some common functionality to an

object type definition. Interfaces can’t be used on their

own; instead, they must be assigned to an object type

definition, and then the object type can use the

components of the interface. Every business object type

definition comes with some SAP standard interfaces, for

instance, IFSAP, IFEXIST, and so on, as shown in Figure 3.6.

The IFSAP Interface provides each object type with the

following components:

Attribute ObjectType

Method Display

Method ExistenceCheck

Figure 3.6 View of Interfaces Defined in a Sample Business Object Type

Key fields

The key fields of an object type are attributes used for

creating an instance of the object type. The key field

values must be supplied from the calling application when

instantiating a business object. Instance-dependent

methods can access the key fields of an object type via

work area OBJECT-KEY-<key field>. An object type can have

more than one key field in its definition, but the combined

object key must not exceed 70 characters in length, as

this is the maximum length of the object key in a BOR

type. Key fields refer to a primary table field, based on

which the object instance is created. Usually, the primary

key of the table matches the object key, with few

exceptions such as BUS2001 and BUS2054. Figure 3.7 shows

an example of a key field in a business object type

definition.

Figure 3.7 Definition of Key Field in a Business Object Type

Attributes

Attributes provide access to the object data, just like class

attributes. Database attributes are non-key fields of the

primary object table (defined earlier in key fields). They

can be fetched directly based on the object type key field

and don’t require any additional code. You just need to

enter the table and field name to be selected. The table

name entered must be the primary object table or

another table with the same key or partial key of the

primary table. The field name entered can be any field

from the selected table. Virtual attributes allow you to

define your own logic to fetch additional data values.

These values may be scalar or tabular. You must write

your own code in the BOR object type program to

populate these attributes. Figure 3.8 shows a sample list

of attributes from BOR type BUS2032, and Figure 3.9 shows

the common settings of an attribute. Here the source

setting of the attribute defines the attribute as Database

field or Virtual. The attribute properties checkboxes

define whether an attribute is scalar or tabular (multiline),

mandatory or optional, and instance independent or

dependent.

Figure 3.8 Definition of Attributes in a Business Object Type

Figure 3.9 Attribute Definition Showing Database/Virtual, Multiline,

Reference Table/Field Properties

Note

Another special category of attributes called Status is

applicable to some BOR types. To make this attribute

category available to your BOR type under the attribute

Source section, you must add the interface IFSTATUS to

your object type definition. Then, you’ll be able to see this

option while creating a new custom attribute. You need to

enter the status number while defining the attribute, and

SAP will automatically populate the attribute while

creating the object instance, if the status is set for the

status object number (attribute StatusObjNumber). Check

standard BOR type BUS2007 for an example.

Methods

Methods are procedures that can be used to fetch

additional data from an object or execute some actions on

a BOR object. For instance, method GetStatus of BOR type

BUS2032 fetches the complete status information of a sales

order. Another method, ChangeFromData, of the same BOR

type allows you to change an existing sales order.

Methods can have import and export parameters as well

as exceptions defined in them.

Methods can be defined as dialog or background.

Figure 3.10 shows the Dialog checkbox under the

General tab of method attributes. If you select the

checkbox then a method is defined as Dialog else it’s

background. Dialog methods are executed in foreground

via a work item in a user’s inbox, and they normally call

some transaction to allow the user to make necessary

changes. Background methods are executed by the

workflow runtime system, and they are used to fetch data

from database tables or execute some action in

background, usually with BAPI calls. Methods with a result

parameter can output a value just like a virtual attribute.

Instance dependent or independent methods define

whether the method logic depends on the object key or

not. Instance independent methods (like static methods in

ABAP class) don’t receive the object instance at the time

of execution, they only depend on import parameters to

receive data.

Methods can also be classified as synchronous or

asynchronous. Figure 3.10 shows the Synchronous

checkbox under the General tab of method attributes. If

you select the checkbox, then a method is defined as

synchronous; otherwise, it’s asynchronous. Synchronous

methods finish executing before handing control back to

the calling program. These types of methods can return

export parameters, results, and exceptions. Asynchronous

methods don’t return control back to the calling program

immediately. Once executed, they depend on terminating

events to communicate the results back to the calling

program. Asynchronous methods may not have result

parameters, export parameters, or exceptions.

Figure 3.10 Method Definition Showing Dialog, Synchronous, Result

Parameter, and Instance Independent Properties

Figure 3.10, Figure 3.11, and Figure 3.12 illustrate the

common settings in a method definition. The settings on

the General tab of the method definition define whether

a method is dialog/background, is

synchronous/asynchronous, has a result parameter or not,

and is instance independent or dependent. The radio

button options on the ABAP tab lets you choose between

different predefined templates of generating the code for

a method. You can choose between function module call,

API function call (BAPI), transaction code, dialog module,

or report program submit call. If you want to write your

own code in the method without using a template, then

choose the Other option. Method parameters, as

displayed in Figure 3.12, can be maintained by clicking on

the Parameters button on the toolbar in Transaction

SWO1 after clicking once on the method name.

Figure 3.11 Method Definition Showing the Different ABAP Coding Options

Available

Figure 3.12 Method Parameter Definition in a BOR Type

Events

Events are components of an object type that define the

possible change in status of the object. For example,

event CREATED of BOR type BUS2032 gets triggered when a

sales order is created. Similarly, event CHANGED is triggered

when a sales order is changed. Events can have import

parameters, but no export parameters or exceptions.

There is no ABAP code written behind the event definition.

Event definition contains just the identifier name (and

possible import parameters). Event publishing must be

handled via other mechanisms, which are discussed in

detail in Chapter 5. Similarly, event receiver linkage is

also handled outside the scope of the BOR definition.

Figure 3.13 shows some examples of event definition in

BOR type BUS2032, and Figure 3.14 shows the parameter

definition in an event. Event parameters may be

maintained by clicking once on the event name and then

clicking on the Parameters button in the application

toolbar of Transaction SWO1.

Figure 3.13 View of Event Definition within an Object Type

Figure 3.14 Definition of Import Parameters in an Event on a BOR Type

BOR program

Every business object type definition includes a source

code program, which is maintained at the header level of

the definition in the Program field (see Figure 3.15). This

program contains all the necessary ABAP source code

behind all the previously discussed component definitions,

that is, key fields, attributes, and methods.

Figure 3.15 BOR Program Name Maintained at the Header Level

Supertype

Business object types may be inherited from other

business object type definitions using a parent-child

relationship. In this context, the parent object type is

referred to as the supertype, and the child object type as

the subtype. For example, standard BOR type BUS2032 is

the subtype for object type VBAK. Here, VBAK is referred to

as the supertype. The supertype name is maintained at

the object type definition header level, and it can’t be

edited once the child object type has already been

created and generated. When you enter a supertype in an

object type definition, all the components from the parent

(interfaces, key fields, attributes, methods, and events)

are automatically inherited into the child definition. These

components appear as red in the child object type and

can’t be edited directly as the definition and source code

of these components still point to the parent. However,

you can redefine the attributes, methods, or events in the

child object type. In that case, the component definition

and source code are copied into the child object type BOR

program and become available for changes. Figure 3.16

shows an example of a custom BOR subtype with

inherited components and new custom components,

which are shown on the screen in red and white,

respectively.

Note

You should be very careful about redefining the

components inherited from a SAP standard business

object type into your own custom object type, as these

may affect standard programs where the parent object is

used and when delegation is maintained from the

supertype to the subtype definition. In this case, we

always recommend creating your own custom

attribute/method/event and adding the required logic in

that component instead of redefining the standard. This

approach ensures that there is no impact on the standard

programs due to your custom changes. Redefinition of

methods may be required, however, for methods inherited

from interfaces, for example, ExistenceCheck, which is

inherited in all object types from the standard interface

IFSAP and needs individual BOR-specific logic to be

implemented here.

Figure 3.16 Custom BOR Subtype Definition Showing Inherited Components

Note that you can create as many subtypes (child) as you

want from a supertype (parent) definition. But you can only

delegate the parent to any one of those subtypes.

Delegation will be covered in more detail in Section 3.1.8.

If you need to change the link to a supertype from a subtype

definition, then follow menu path Object Type •

Inheritance • Change Supertype from Transaction SWO1.

This will allow you to enter a new supertype name to your

current object type. However, note that this action will

remove the inherited components from your previous

supertype and replace them with the new one.

3.1.2 Defining a Custom Business Object

Repository Object Type

In the example in this section, you’ll be creating a custom

BOR type for an outbound delivery in SAP. In standard SAP,

there’s already an object type available for deliveries called

LIKP. However, if you want an object type specific to

outbound delivery (LIKP-VBTYP = J), then you can opt for a

custom BOR type definition. You can also create a subtype

for outbound delivery, inheriting from the supertype LIKP

(this approach will be discussed in Section 3.1.7).

Note

Normally, we don’t recommend creating a completely

custom BOR object type definition without any link to a

standard supertype in SAP. In this case, you should go for

the ABAP class-based approach (explained in Section 3.2).

Even though there are no technical constraints with the

BOR approach, the class-based approach provides a

cleaner object-oriented coding style that is compatible

with the latest ABAP coding standards suitable for SAP

S/4HANA. BOR programming deals heavily with macros,

which are slightly difficult to follow and debug compared

to OOP.

Before creating a custom BOR type in Transaction SWO1,

you should always search for available standard object

types that you can reuse or extend with a subtype if

required. To search for standard BOR types, you can use the

BOR that can be accessed via the same toolbar option from

Transaction SWO1 or directly via Transaction SWO3.

Figure 3.17 shows a view of the BOR in SAP with object type

hierarchies grouped by application components.

Figure 3.17 View of the BOR in SAP with Object Type Hierarchies Grouped by

Application Components

To create a custom BOR type definition in SAP, go to

Transaction SWO1, enter the name for your custom Object

type, and click on the Create button. In the next popup

screen, shown in Figure 3.18, enter the Object name,

Name, Description, and BOR Program name, along with

Application. Because you’re creating a completely custom

BOR type, you can leave the Supertype field blank.

Figure 3.18 Creating a Custom BOR Type from Transaction SWO1

After entering these details, press (Enter), and then enter

the package and transport details when prompted. The

object type definition is initially created in Modeled status,

which is indicated by the highlighted icon beside the object

type name in Figure 3.19.

Figure 3.19 Object Type Definition Created in Modeled Status

You must now change the object type status from Modeled

to Implemented by following menu path Edit • Change

Release Status • Object Type • To Implemented,

resulting in the screen shown in Figure 3.20.

Next, you can save and generate the object type definition.

In the BOR builder, the Generate button acts like the

Activate button in regular ABAP programs.

Figure 3.20 Object Type Status Changed to Implemented

3.1.3 Creating Key Fields and Attributes

The next step is to create the key field(s) for the newly

defined object type ZOUTBDELV. You can either right-click on

the Key fields node and choose Create, or you can click on

the node once and click on the Create button on the toolbar

inside Transaction SWO1. You’ll receive a popup message,

as shown in Figure 3.21. It doesn’t matter which option you

choose while creating the key field. Both have the same

result in terms of object type definition. In this case, select

Yes and proceed.

Figure 3.21 Popup to Choose between Database or Virtual Definition of the

Key Field

Once you select Yes in the popup, another popup appears

asking you to enter the primary key table and then select

the key field(s) from this table. In this case, choose “LIKP” as

the primary Table and VBELN (Delivery) as the key field

(see Figure 3.22).

Figure 3.22 Selection of the Primary Key Table and Key Field

Press (Enter) after selecting the primary key, then

confirm/update your key field name per your naming

standards, and click on the Create button to proceed.

Figure 3.23 illustrates this step for this example scenario,

and Figure 3.24 shows the result.

Figure 3.23 Confirming the Key Field Name

Figure 3.24 View of Object Type Definition after Creating the Key Field

Finally, you can save and generate the object type

definition.

Next, you’ll create two attributes in the object type—one

database and one virtual. You’ll create a database attribute

for Delivery Type (LIKP-LFART) because it’s based on table

LIKP, and you’ll create a virtual attribute for Sales Order

Type (VBAK-AUART), which requires some custom ABAP coding.

Right-click on the Attributes node of the business object

type definition, and click Create or choose the Create

button from the toolbar. In the popup that appears for the

Dictionary field proposal, choose Yes. Then, select the field

name from the list of available fields in table LIKP, as shown

in Figure 3.25.

Figure 3.25 Selection of Table Fields for the Database Attribute Definition

Enter the name and description of the new database

attribute to be created, as shown in Figure 3.26.

Figure 3.26 Confirm the Database Attribute Name per Naming Standards

Figure 3.27 shows the view of the object type definition after

creation of the new database attribute.

Next, click once on the attribute name, and then click on the

Program button from the toolbar. You’ll be prompted to

generate a template code automatically for the new

database attribute. Select Yes, as shown in Figure 3.28.

Figure 3.27 Object Type Definition after Creation of the Database Attribute

Figure 3.28 Popup to Automatically Generate Template Code for the

Database Attribute

Once you click on Yes, the template source code to fetch

data from the attribute source table is auto-generated, as

shown in Figure 3.29.

Figure 3.29 View of Automatically Generated Source Code for Database

Attribute

Now go back, save, and generate the object type.

Note

The generation of template code for the database

attribute is usually required only once in an object type

definition. As you can see from Figure 3.29 just shown, the

code is a generic SELECT on table LIKP based on the key

field, which is the delivery number. If you add another

database attribute from table LIKP, for instance, shipping

point (LIKP-VSTEL), then the same SELECT query will be

reused to populate this attribute.

Next, you’ll create a virtual attribute for the sales order type

(VBAK-AUART). Click on the Attributes node, and select

Create. In the popup for the ABAP Data Dictionary (DDIC)

field proposal, choose No this time. Confirm the name of the

Attribute, and maintain the data type properties as shown

in Figure 3.30. Enter the attribute name, description, and

reference table field under Data Type Reference.

Figure 3.30 Definition of a Virtual Attribute in the Object Type

The new virtual attribute is created in Modeled status

(page icon beside the attribute name). Figure 3.31 shows

the view of the business object type after creation of the

new virtual attribute.

Figure 3.31 View of a Newly Created Virtual Attribute in Modeled Status

Change the status of the attribute to Implemented by

following menu path Edit • Change Release Status •

Object Type Component • To Implemented.

Now, you must maintain the source code for the virtual

attribute. Before you do that, the BOR framework helps in

generating an empty template code for the new attribute.

Click on the attribute once, and then click the Program

button on the toolbar. Select Yes in the popup prompt

asking to generate a template, as shown in Figure 3.32.

Figure 3.32 Popup Prompt to Generate an Empty Template Section for the

Virtual Attribute

Figure 3.33 shows the template source code generated for

the new virtual attribute. The template code contains a

single line with a macro to populate attribute ZWAVOrderType

between the GET_PROPERTY and END_PROPERTY section.

Figure 3.33 Generated Template Code Section for the Virtual Attribute in the

BOR Program

Now you must write the source code with custom logic to

populate the order type attribute. Listing 3.1 is a sample

code for reference. You’ll learn more about BOR

programming techniques and about the common macros in

Section 3.1.9.

get_property zwavordertype changing container.

***Fetch order type from preceding Sales order document

***Here we assume that each outbound delivery is created from a

***single sales order

SELECT FROM lips " SD document: Delivery: Item data

 INNER JOIN vbak " Sales Document: Header Data

 ON vbak~vbeln = lips~vgbel

 FIELDS vbak~auart " Sales Document Type

 WHERE lips~vbeln = @object-key-zwkdelivery

 INTO @DATA(lv_auart)

 UP TO 1 ROWS.

ENDSELECT.

IF sy-subrc = 0.

 object-zwavordertype = lv_auart.

ENDIF. " IF sy-subrc = 0

swc_set_element container 'ZWAVOrderType' object-zwavordertype.

end_property.

Listing 3.1 Sample ABAP Source Code for the Virtual Attribute

Go back to save and generate the object type definition.

3.1.4 Creating Methods and Defining

Properties, Parameters, and Exceptions

Continuing with the development of the custom business

object type, you’ll now redefine inherited method

ExistenceCheck and create a new custom background method

for goods issue of an outbound delivery.

To redefine method ExistenceCheck, right-click on the

interface method, and select Redefine. Then, click once on

the method name, and then click on the Program button on

the toolbar. A popup screen appears requesting confirmation

to generate the template code for implementation of

method ExistenceCheck. Click Yes and continue, as shown

in Figure 3.34.

Figure 3.35 shows the template code being added to the

BOR program for the redefined method with the BEGIN_METHOD

and END_METHOD keywords. You need to add the custom logic

for the method between these two lines.

Figure 3.34 Popup Confirmation to Generate a Template Section for Method

Implementation

Figure 3.35 Template Section Inserted in the BOR Program with Method

Implementation

Now you can insert your own code within this method

implementation. The sample code in Listing 3.2 is just for

reference. We’ll discuss BOR programming in Section 3.1.9.

begin_method existencecheck changing container.

 *Check if object exists and is a valid outbound delivery

SELECT FROM likp " SD Document: Delivery Header Data

 FIELDS COUNT(*)

 WHERE vbeln = @object-key-zwkdelivery

 AND vbtyp = 'J'.

IF sy-subrc <> 0.

 exit_return 0001 space space space space.

ENDIF. " IF sy-subrc <> 0

end_method.

Listing 3.2 Sample Source Code for Method ExistenceCheck of the Outbound

Delivery Object Type

Go back to save and generate the object type.

Next, you’ll create a new method for goods issue of the

delivery. You can either right-click on the Methods node

and select Create, or you can click on the Create button

from the toolbar. You’ll receive a popup message asking if

you would like to create with the function module as

template (see Figure 3.36).

Figure 3.36 Popup to Confirm if the Method Should Be Created with a

Function Module Call

This option lets you generate the method based on an API

call. This approach is particularly useful when you’ve

already modularized your method logic in a function module

or when a standard BAPI or API call meets the requirement

of your method. If you select Yes, then in the next screen,

you’ll be asked to select the function module name and then

select the import and export parameters that should be

mapped to the method interface. The generated template

code will map the import parameters from the method to

the function module and the export parameters from the

function module back to the method export parameters.

If you select No, then you must write the method code

yourself. Confirm the method name per your naming

standards and choose the method attributes.

Figure 3.37 Popup Screen for Method Attributes Selection

The method attributes under the General tab (see

Figure 3.37) have the following significance:

Dialog

If you select this checkbox, then the method will be

executed in foreground mode; otherwise, the method will

be executed in background. This setting is inherited from

the method into the activity step task definition, which

we’ll explore in Section 3.3.1. Dialog methods are

intended for user-based execution of a transaction.

Background methods are intended for database query or

update operations.

Synchronous

This setting determines whether the method execution

(and the corresponding activity task execution) is set to

complete when the method processing completes, or if it

should wait for some external events to complete the

execution status. Background methods are always

synchronous because the processing of the method and

corresponding tasks completes as soon as the method

logic is executed. Dialog tasks are usually asynchronous

because the completion of processing depends on

updating some key information in the transaction by the

user, which is identified by terminating events.

Result parameter

This checkbox can be used to create a method with a

result parameter. In this case, a result parameter must be

maintained for the method (in the Result type tab of the

same popup screen), which will have the output value

after method execution.

Instance-independent

This checkbox marks the method as independent of the

object instance; that is, it’s not dependent on the key field

of the object type. For instance, if you have a method to

create the outbound delivery, then the delivery number

(instance key) isn’t relevant for the method. Another

example is a method to determine the email address of

the approver.

There are further settings in the ABAP tab of the method

creation popup, which are to do with the generation of

template code for method implementation. In Figure 3.38,

all the highlighted options generate a template code for the

method. If you prefer to write your own code, then select

the Other radio button in this tab.

Figure 3.38 ABAP Tab Attributes for Method Creation

Once you click on execute (green check button) in the

screen just shown in Figure 3.38, the method is created in

Modeled status. You must move it to Implemented status

via menu path Edit • Change Release Status • Object

Type Component • To Implemented.

Next, you’ll add the method parameters, if any. In this

example, you can add the goods issue date as an import

parameter and the BAPI return table as a multiline export

parameter.

Click once on the method name, and then click on the

Parameters button on the toolbar. In the next screen, click

on the Create button. In the next popup screen, you can

choose to create the parameter with an DDIC field proposal

if you want to refer to the data type of the parameter from

an existing SAP table/field. For this example, click on Yes.

Enter the Table name as “LIKP” in the next screen and

select the field WADAT_IST from the list, as shown in

Figure 3.39.

Figure 3.39 Select Table Field for Method Parameter Creation

Figure 3.40 shows a view of the method parameter creation

step. In this screen, you must enter the parameter name

and description, and select the attributes for the parameter

type (Import/Export), scalar or tabular (Multiline),

mandatory/optional (Mandatory), and whether the

parameter should be auto-populated from the object type

key field (Supplied from Key).

Once you click on Create, then the import parameter is

created. In the same way, you can create the export

parameter for the method. Figure 3.41 illustrates with an

example the step to create an export parameter for the

method.

Figure 3.40 Entering the Method Parameter Name and Selecting Attributes

Figure 3.41 Creation of the Method Export Parameter

Figure 3.42 shows the view of method parameters after they

have been created.

Similarly, you can also add exceptions to the method

definition by clicking on the Exception button on the

toolbar. Let’s create an exception called “Goods Issue failed”

for our case study. The benefit of creating an exception as

opposed to a simple return message is that at runtime when

the method (called from an activity task step) terminates

with an exception, then the message from the exception is

reflected directly on the workflow log, and the workflow is

set to Error status. You can use subsequent Restart after

Error functions in the workflow to reprocess the step after

the issue is resolved.

Figure 3.42 View of Method Parameters

Once you click the Exception button and then click on

Create, you get the popup screen shown in Figure 3.43.

Enter an Exception number, select the Error type for the

exception, and then enter the Message class and number

that will be called when the exception is triggered. Let’s look

at each field in detail:

Exception

For custom exceptions, you can enter any number

between 9000 and 9999.

Error type

Choose from Temporary error, Application error, and

System error. The choice of this type depends on the

workflow system response in terms of handling this

exception and how the exception may be reprocessed via

standard workflow jobs. Temporary exceptions are

automatically reprocessed by job

SAP_WORKFLOW_SYSTEM_TEMPORARY after this exception is raised.

On the other hand, application and system errors are

reprocessed by periodic job SAP_WORKFLOW_SYSTEM, depending

on the scheduling frequency.

Message

Enter the message class and message number that will be

called once the exception is raised.

Figure 3.44 shows the view of the method exception after

creation.

Now go back, click once on the method name, and select

the Program button from the toolbar. You’ll be prompted to

generate the method implementation in the BOR program.

Select Yes and proceed. Figure 3.45 shows the popup

message prompting you to generate the method

implementation.

Figure 3.43 Selection of Exception Definition Attributes

Figure 3.44 View of Method Exception Definition

Figure 3.45 Popup Prompt to Generate Method Implementation in the BOR

Program

The template code for method implementation is

automatically inserted into the BOR program, as shown in

Figure 3.46. You can add your own logic in the method now

between the SWC_GET_ELEMENT macro (to read the import

parameter into local variable) and the SWC_SET_TABLE macro

(to populate the export parameter from the local internal

table). Once this is completed, go back and generate the

object type definition.

We’re not including the source code for goods issue of

delivery here as this depends on customer and system

requirements. However, we’ll be covering more examples

for method definition under the BOR programming in

Section 3.1.9.

Figure 3.46 Template Code for Method Implementation Added into the BOR

Program

3.1.5 Creating Business Object Repository

Events

In this section, you’ll add two events to the custom BOR

type definition, ZWECreated and ZWEGoodsIssueCompleted. (Enter

your event name per your naming standards.)

You can either right-click on the Events node of the object

type definition inside Transaction SWO1 and select Create,

or you click on the Create button from the toolbar.

Figure 3.47 shows the details, such as Name and

Description, that you must enter to create a new event.

Figure 3.47 Event Definition in the Business Object Type

The checkbox for Triggering object does not exist makes

the event instance independent, which means the event

isn’t dependent on the object type key field and triggering

this event doesn’t create an instance of the BOR object type

in which the event is defined.

Once you confirm the event name in the popup screen, the

event is created in Modeled status in the object type. You

must change the status of this event to Implemented by

following menu path Edit • Change Release Status •

Object Type Component • To Implemented.

Now, follow the same steps to add another custom event,

ZWEGoodsIssueCompleted. Once this is done, save and generate

your object type.

Figure 3.48 shows the view of the business object type after

creation of the events.

Figure 3.48 Event Definition in the BOR Object Type

You can also add event parameters (importing only) like

method parameters. In this example, however, we haven’t

defined any event parameters.

Event definition doesn’t add any source code to the BOR

program, so there is no event implementation step required

like for attributes and methods. Here, we’ve only defined

the event name (along with any parameters) in our custom

BOR type. Event triggering and receiver linkage is handled

through separate configurations discussed in detail in

Chapter 5.

3.1.6 Testing a Business Object Repository

Object Type

Once the definition of your custom object type is complete,

you can single test the same from Transaction SWO1. Enter

the object type name in Transaction SWO1, and click on the

Test button. You can also use the Test/Execute (F8) button

inside Transaction SWO1. In this example you’ll test the

custom object type ZOUTBDELV developed in the previous

sections of this chapter. Once you click on the Test/Execute

button, the system will prompt you to enter the key field

values, in this case, the outbound delivery number (see

Figure 3.49). The key field information is required to create

an instance of the object type.

Enter the delivery number, and click on Enter to create an

instance of the BOR type. All attributes will be populated per

the defined mapping logic. You can also test the methods by

executing them separately and entering the method import

parameters (if any). Figure 3.50 shows a view of the Test

Object Type screen after creating the object instance.

Figure 3.49 Testing a BOR Object Type in Transaction SWO1

Figure 3.50 BOR Type Object Instance Displaying Attributes and Methods

Available for Execution

Figure 3.51 shows an example of executing and testing a

method from the BOR transaction by entering the required

import parameters and then clicking on the Execute (F8)
button or the Debugging button (if you want to start the

debugger).

Figure 3.51 Testing a BOR Method

You can debug any method or virtual attribute code in the

BOR type by setting a breakpoint on the required source

code line in the BOR program.

3.1.7 Creating a Subtype of a Standard

Business Object Repository Object Type

In Section 3.1.2, we looked at the steps to create a custom

BOR type from Transaction SWO1. However, in most cases,

you’ll find that SAP has already provided a standard object

type definition for your standard SAP applications, such as

purchase orders, sales orders, deliveries, billing documents,

and so on. In these cases, when you need to add some

attribute, method, or event that isn’t provided in the

standard BOR type (also called a supertype), you may need

to extend these object type definitions by using the subtype

approach.

A subtype definition is technically a child of the supertype

and is hierarchically one level below the supertype. For

instance, BUS2032 (sales order) is the subtype of VBAK (sales

document). Semantically, BUS2032 is the object definition of

one specific category of a sales document (VBAK-VBTYP = C),

whereas VBAK is the BOR type for all sales documents. Now

consider an example where you need to have the customer

PO number (VBKD-BSTKD) as an attribute in your object type.

Standard BOR type BUS2032 doesn’t have this attribute, so

you need to extend the standard BOR type by creating a

subtype and then add your custom attribute (and

methods/events if required) in the same.

After creating a subtype of a standard BOR type, you can

add new attributes, methods, and events in the BOR type in

the same way as described in previous sections for a

custom BOR type. However, you should not edit the

standard attributes, methods, or events by way of

redefinition as a best practice (except for interface methods,

which may be redefined in some cases). If you want to make

changes to the logic of some standard attribute or method,

it’s better to create your custom component by copying and

then making the necessary changes. Changing the key field

definition of a subtype is also not allowed. Table 3.1

summarizes the editing options for each BOR component in

a subtype.

BOR

Component

Adding

New in

Subtype

Editing in Subtype

Key fields Not

allowed

Not allowed.

BOR

Component

Adding

New in

Subtype

Editing in Subtype

Attributes Allowed Inherited virtual attributes may

be redefined, but not

recommended. Database

attributes can’t be edited or

redefined.

Methods Allowed Inherited methods may be

redefined, but not recommended.

Events Allowed Inherited events may be

redefined by adding new

parameters.

Table 3.1 Summary of Component Editing Options in a Subtype Definition

To create a BOR subtype in SAP, follow these steps:

1. Enter the BOR supertype name in Transaction SWO1 in

the Object/Interface Type field, and click on the

Create Subtype button on the toolbar. Enter the

subtype name, description, and program name details,

as shown in Figure 3.52.

Figure 3.52 Creating a BOR Subtype Definition from Transaction SWO1

2. After creation of the subtype, the object type status is

set to Modeled. You must change it to Implemented

by following menu path Edit • Change Release Status

• Object Type • To Implemented.

3. Figure 3.53 shows the Change Object Type screen

where all the inherited components from the supertype

appear in red in the subtype, and new components or

redefined components in the subtype appear in white.

Figure 3.53 Subtype Definition Showing Inherited Components and Header

Release Status

3.1.8 Delegation

Delegation is a very powerful tool in the business object

type concept, which lets you add custom attributes,

methods, and events to a standard BOR type via the

subtype approach, but you can still access these custom

components via the supertype. This allows you to go with a

modification-free approach for your custom business

requirements.

For example, consider that you’ve created a subtype of

BUS2032 called ZBUS2032 and added new custom attributes,

methods, and events in the subtype. Now, if you delegate

BUS2032 to ZBUS2032 object type, then you can access the

custom attributes, methods, and events directly via BUS2032

in your workflow and task definition. You don’t need to use

ZBUS2032 anywhere in the workflow. Standard SAP searches

for the custom components in the supertype BOR program

first, and if it can’t find the components defined there, then

it searches for them in the delegated subtype BOR program.

Note that you can create N number of subtypes for a BOR

type definition, but you can delegate the supertype to only

one subtype. This means that there can be only one

delegated subtype of a business object type in SAP.

You can access the delegation setting from Transaction

SWO1 via menu path Settings • Delegate or directly via

Transaction SWO6. This is a cross-client configuration

activity that is saved in a workbench transport. Figure 3.54

shows the delegation screen with the list of supertypes that

have been delegated to a subtype.

Figure 3.54 Delegation Configuration Showing the Supertypes Maintained

Now if you select any object type and click on the Detail

button, the delegated subtype is shown. After creating your

own subtype, you can maintain a new entry in this

configuration.

3.1.9 Business Object Repository

Programming

BOR programming is commonly used in the coding of the

virtual attributes and methods of an object type definition.

This programming technique makes heavy use of macros,

especially for reading and updating values in the container.

A container in the context of a workflow refers to a data

object with a typical structure of type SWCONT. Containers are

used in workflow definitions, task definitions, method

parameters, rules, and so on. Containers may have multiple

elements defined in them. These container elements are

synonymous to variables or internal tables in a program. So,

if you need to read the value of a container element or

update a container element with some value, these macros

come in very handy. You can also use these macros in

standalone report programs by including program

<CNTN01>. This include contains the definition of the most-

used macros in BOR programming.

Next we’ll look at the various applications and use cases of

macros in BOR programming. We’ll start by looking at the

some common macros used in defining virtual attributes

and then some other macros used in defining methods.

Virtual Attribute Definitions

When you add a virtual attribute in a BOR type definition,

internally it adds the attribute to a complex data structure

definition named OBJECT. Key fields are also defined under

the same object as a nested structure. Figure 3.55 shows a

simple view of a business object with a virtual attribute

defined.

Figure 3.55 Virtual Attribute ZWAVOrderType Added in the Object Type

Definition

In Listing 3.3, you can see the generated code behind the

attribute definitions.

Note

Database attributes don’t add any code under the object

data structure definition.

***** Implementation of object type ZOUTBDELV *****

INCLUDE <object>. " INCLUDE for Object Type Definition

begin_data object. " Do not change.. DATA is generated

* only private members may be inserted into structure private

DATA:

 " begin of private,

 " to declare private attributes remove comments and

 " insert private attributes here ...

 " end of private,

 BEGIN OF key,

 zwkdelivery LIKE likp-vbeln, " Delivery

 END OF key,

 zwavordertype TYPE vbak-auart, " Type

 _likp LIKE likp. " SD Document: Delivery Header Data

end_data object. " Do not change.. DATA is generated

Listing 3.3 Generated Source Code behind Key Field and Attribute Definition

in an Object Type

The key field of this BOR type may be addressed as OBJECT-

KEY-ZWKDELIVERY, and the virtual attribute may be addressed

as OBJECT-ZWAVORDERTYPE, anywhere inside the BOR program.

The key field(s) and attributes act as global data

declarations inside the BOR program. Each object program

contains the internal reference SELF, which refers to the

object instance with which the program was called.

Commonly Used Macros in Business Object

Repository Virtual Attributes

In Listing 3.4, macro SWC_GET_PROPERTY reads the attribute of

an object type. When this macro is used with the addition

SELF, then it means you’re trying to read the attribute from

the same object type. The literal Price denotes the name of

the attribute you’re trying to read, and the variable Price is

used to return the value of this attribute in the current

attribute definition logic. If the attribute to be read is a table

type, then use macro SWC_GET_TABLE_PROPERTY instead.

GET_PROPERTY Total CHANGING CONTAINER.

 DATA : Price TYPE Zprice,

 Qty TYPE Zqty.

 IF object-total is initial.

 SWC_GET_PROPERTY self 'Price' Price.

 SWC_GET_PROPERTY self 'Quantity' Qty.

 Object-Total = Price * Qty.

 ENDIF.

 SWC_SET_ELEMENT CONTAINER 'Total' object-total.

END_PROPERTY.

Listing 3.4 Population of a Simple Virtual Attribute Using Macros

Macro SWC_SET_ELEMENT updates element Total in the object

container with the value in object-total. If the attribute is

multiline (table type), then instead of using the

SWC_SET_ELEMENT container, you would use the SWC_SET_TABLE

container.

Refer to the example in Listing 3.5 for another piece of

source code for a BOR method illustrating the usage of

macros for reading/writing container elements defined as

method import and export parameters. Listing 3.5 reads the

import parameters of the method with macros

SWC_GET_ELEMENT or SWC_GET_TABLE into local variables, performs

a database query operation by calling a BAPI, and then

populates the export parameters from local variables using

macros SWC_SET_ELEMENT and SWC_SET_TABLE.

BEGIN_METHOD GETLIST CHANGING CONTAINER.

DATA:

 CUSTOMERNUMBER TYPE BAPI1007-CUSTOMER,

 SALESORGANIZATION TYPE BAPIORDERS-SALES_ORG,

 MATERIAL TYPE BAPIORDERS-MATERIAL,

 MATERIAL_LONG TYPE BAPIORDERS-MATERIAL_LONG,

 DOCUMENTDATE TYPE BAPIORDERS-DOC_DATE,

 DOCUMENTDATETO TYPE BAPIORDERS-DOC_DATE,

 PURCHASEORDER TYPE BAPIORDERS-PURCH_NO,

 PURCHASEORDERNUMBER TYPE BAPIORDERS-PURCH_NO_C,

 TRANSACTIONGROUP TYPE BAPIFLAG-BAPIFLAG,

 RETURN LIKE BAPIRETURN,

 MATERIALEVG LIKE BAPIMGVMATNR,

 SALESORDERS LIKE BAPIORDERS OCCURS 0.

 SWC_GET_ELEMENT CONTAINER 'CustomerNumber' CUSTOMERNUMBER.

 SWC_GET_ELEMENT CONTAINER 'SalesOrganization' SALESORGANIZATION.

 SWC_GET_ELEMENT CONTAINER 'Material' MATERIAL.

 SWC_GET_ELEMENT CONTAINER 'MaterialLong' MATERIAL_LONG.

 SWC_GET_ELEMENT CONTAINER 'DocumentDate' DOCUMENTDATE.

 SWC_GET_ELEMENT CONTAINER 'DocumentDateTo' DOCUMENTDATETO.

 SWC_GET_ELEMENT CONTAINER 'PurchaseOrder' PURCHASEORDER.

 SWC_GET_ELEMENT CONTAINER 'PurchaseOrderNumber' PURCHASEORDERNUMBER.

 SWC_GET_ELEMENT CONTAINER 'TransactionGroup' TRANSACTIONGROUP.

 IF SY-SUBRC <> 0.

 MOVE 0 TO TRANSACTIONGROUP.

 ENDIF.

 SWC_GET_ELEMENT CONTAINER 'materialEVG' MATERIALEVG.

 SWC_GET_TABLE CONTAINER 'SalesOrders' SALESORDERS.

 CALL FUNCTION 'BAPI_SALESORDER_GETLIST'

 EXPORTING

 CUSTOMER_NUMBER = CUSTOMERNUMBER

 SALES_ORGANIZATION = SALESORGANIZATION

 MATERIAL = MATERIAL

 MATERIAL_LONG = MATERIAL_LONG

 DOCUMENT_DATE = DOCUMENTDATE

 DOCUMENT_DATE_TO = DOCUMENTDATETO

 PURCHASE_ORDER = PURCHASEORDER

 TRANSACTION_GROUP = TRANSACTIONGROUP

 PURCHASE_ORDER_NUMBER = PURCHASEORDERNUMBER

 MATERIAL_EVG = MATERIALEVG

 IMPORTING

 RETURN = RETURN

 TABLES

 SALES_ORDERS = SALESORDERS

 EXCEPTIONS

 OTHERS = 01.

 CASE SY-SUBRC.

 WHEN 0. " OK

 WHEN OTHERS. " to be implemented

 ENDCASE.

 SWC_SET_ELEMENT CONTAINER 'Return' RETURN.

 SWC_SET_TABLE CONTAINER 'SalesOrders' SALESORDERS.

END_METHOD.

Listing 3.5 Usage of Macros for Reading and Writing Container Elements

Defined as Method Parameters

Macros for Creating Object References and

Containers

An object reference can be created in a method or a virtual

attribute using macro SWC_CREATE_OBJECT. As shown in

Listing 3.6, in this macro, the first parameter is the object

type reference that will hold the object instance followed by

the name of the object type and finally the key field value of

the object type.

get_property salesanddistribarea changing container.

DATA : BEGIN OF salesanddistribarea,

 vkorg LIKE vbak-vkorg,

 vtweg LIKE vbak-vtweg,

 spart LIKE vbak-spart.

DATA : END OF salesanddistribarea.

DATA: salesorganization TYPE swc_object.

swc_get_property self 'SalesOrganization' salesorganization.

swc_get_property salesorganization

 'SalesOrganization'

 salesanddistribarea-vkorg.

swc_get_property self 'DistributionChannel' salesanddistribarea-vtweg.

swc_get_property self 'Division' salesanddistribarea-spart.

swc_create_object object-salesanddistribarea

 'BUS0006003'

 salesanddistribarea.

swc_set_element container 'SalesAndDistribArea'

 object-salesanddistribarea.

end_property.

Listing 3.6 Example to Illustrate the Usage of Macro SWC_CREATE_OBJECT in

BOR Programming

Local containers can be created and initialized in BOR

programming using macros SWC_CONTAINER and

SWC_CONTAINER_CREATE, as follows:

SWC_CONTAINER <Cont> "Declares a container in BOR program

SWC_CONTAINER_CREATE <Cont> "Initializes the container in BOR program

SWC_RELEASE_CONTAINER <Cont> "Releases the container, after which it cannot be

edited

Macro for a Method Call in Business Object

Repository Programming

Macro SWC_CALL_METHOD can be used to call a method from the

same object type or a different object type. The two variants

of this macro are as follows:

SWC_CALL_METHOD <object> <method> <container>

SWC_CALL_METHOD SELF 'AllAgentsOfTaskGet' CONTAINER.

Macros for Method Exceptions

Exceptions in methods can be raised using macro

EXIT_RETURN <exception #> <var1> <var2> <var3> <var4>, where

Exception # is the exception ID defined in the method, and

<var1>, <var2>, <var3>, and <var4> are the message variables

for the message number tagged to the exception ID. Refer

to Section 3.1.4 for details on exceptions.

Some other commonly used macros for method exceptions

are as follows (these are just variants of main macro

EXIT_RETURN):

EXIT_OBJECT_NOT_FOUND

Tells the workflow runtime system that the object doesn’t

exist.

EXIT_CANCELLED

Tells the workflow runtime system that an action was

canceled by the user in the dialog.

EXIT_NOT_IMPLEMENTED

Tells the workflow runtime system that a method isn’t

implemented.

EXIT_PARAMETER_NOT_FOUND

Tells the workflow runtime system that a mandatory

parameter is missing.

3.2 ABAP Class Approach

The ABAP classes for workflow functionality was introduced

in release 6.20, but there were various restrictions till

release 6.40. Any normal ABAP class implementing interface

IF_WORKFLOW can be used for workflow. Interface IF_WORKFLOW

interface inherits two interfaces: BI_OBJECT and BI_PERSISTENT.

If your workflow requirement is for a custom application or

for an SAP standard application that doesn’t provide a BOR

type definition, then it’s recommended to go with the ABAP

class approach. It avoids the complexities introduced by the

macros in BOR programming and provides a much cleaner

and efficient coding style in concurrence with the latest

ABAP coding standards and best practices.

Table 3.2 highlights some of the notable distinctions

between the BOR approach and the ABAP class approach

with respect to the workflow. Properties BOR ABAP Classes

Properties BOR ABAP

Classes

Delegation Via Customizing table No delegation

Transaction Transaction SWO1 Transaction

SE24

Key length Max of 70 characters Max of 32

characters

Attribute

types

Key, database, virtual, status Key, non-key,

public, private

Properties BOR ABAP

Classes

Method

types
Dialog/background

Synchronous/asynchronous

N/A

Method

parameters

Importing, exporting, result Importing,

exporting,

changing,

returning

Method

exceptions

Temporary, application,

system

All exception

classes

starting with

CX_BO, for

example,

CX_BO_TEMPORARY

and

CX_BO_ERROR

Tables Multiline parameters Table types

Table 3.2 Primary Differences between the BOR Approach and the ABAP

Class Approach

In the following sections, we’ll go through a step-by-step

approach to create a workflow class; add attributes,

methods, and events to the class; and then test the class

standalone.

3.2.1 Creating a Workflow Class

Let’s go through the various steps of creating a workflow

class with the help of an example business scenario in which

you’re developing a workflow for release of a billing

document created in SAP. Billing documents will be

automatically blocked at the time of creation based on some

restrictions and then trigger an approval workflow. Once the

workflow is approved, the billing document will be posted

and released to accounting. Here, the key field involved is

the billing document number (VBRK-VBELN). Now let’s look at

the development of the workflow class and business logic

implementation for this requirement.

Create a new ABAP class from Transaction SE24, as shown in

Figure 3.56. Enter the class name and description. In

Inst.Generation, choose 2 Public; select the class type as

Usual ABAP Class; and select the Final checkbox to mark

it as final.

Figure 3.56 Creation of a New Normal ABAP Class from Transaction SE24

After creation of the class, go to the Interfaces tab, enter

“IF_WORKFLOW”, and press (Enter). Two more inherited

interfaces, BI_OBJECT and BI_PERSISTENT, automatically get

added to the class definition. The addition of interface

IF_WORKFLOW transforms your class from a regular ABAP class

to a workflow business class. Figure 3.57 shows the

workflow class after the addition of interface IF_WORKFLOW.

Figure 3.57 Addition of Interface IF_WORKFLOW to the Workflow Class

Now save and activate the class.

3.2.2 Defining Key Attributes and Non-Key

Attributes

Attributes in an ABAP class provide access to the data from

the object instance. Key attributes are specifically used to

create the object instance; that is, they are the import

parameters of the CONSTRUCTOR method and together form the

instance ID (INSTID) in the LPOR (local persistent object

reference) attribute of the ABAP class. The key attribute

isn’t a universal concept in regular ABAP classes. They

appear in workflow business classes only through the

IF_WORKFLOW interface. The LPOR attribute is a required and

critical attribute in any workflow business class. This

attribute is used by the workflow runtime to persist an

object instance and populate the instance buffer as and

when requested by the workflow runtime. All other object

attributes required to be used in your workflow and task

subject and descriptions should be created as Instance and

Public. Attributes that aren’t dependent on the object

instance can be created as Static.

Let’s go ahead and create the required attributes for the

workflow scenario related to billing document release in SAP

S/4HANA. Because the key field for the object instance is the

billing document number, you’ll first create an attribute for

the same.

Create attribute MV_VBELN in your workflow business

class, mark it as Instance Attribute under Level and

Public under Visibility, and select the key (checkbox in the

K column) in the Attributes section, as shown in

Figure 3.58.

Figure 3.58 View of the Key Attribute Definition in the Workflow Business

Class

Next, create the MS_LPOR attribute, as shown in

Figure 3.59. Mark it as Instance and Private (as this

attribute will only be used internally within the class). Enter

“SIBFLPOR” as the Associated Type of this attribute.

Figure 3.59 Creation of the LPOR Attribute in the Workflow Business Class

Now you need to define the instance buffer structure (under

types declarations of the class) and then create a table type

attribute for the same. This attribute should be a static one

as it will hold the collection of object instances for this

workflow class at runtime in the object buffer.

Note

The instance buffer approach is optional. It’s a mechanism

that improves the performance efficiency of a workflow

business class by avoiding unnecessary instantiation of

the object similar to the concept of a singleton class.

Add the code in Listing 3.7 under the local private

implementation section of the class definition.

private section.

 types:

 BEGIN OF ty_s_inst_buffer,

 vbeln TYPE vbeln_vf, " Billing Document

 instance TYPE REF TO object, " class

 END OF ty_s_inst_buffer .

 types:

 ty_t_inst_buffer TYPE STANDARD TABLE OF ty_s_inst_buffer WITH KEY vbeln .

 class-data MT_INSTANCE_BUFFER type TY_T_INST_BUFFER .

Listing 3.7 Local Types Declaration for the Instance Buffer in the Workflow

Class

This will create the MT_INSTANCE_BUFFER attribute in the

class, as shown in Figure 3.60.

Figure 3.60 View of the Instance Buffer Attribute in the Workflow Business

Class

Now, add some more attributes for the sales document

type, sales organization, distribution channel, net value, and

billing type in your workflow class. These optional attributes

will be created as instance and public, and they are

intended to be used in your workflow and task definition per

your business requirement. Once the attributes are created,

your workflow class will look something like Figure 3.61.

Figure 3.61 Overall View of Attributes in the Workflow Business Class

Save and activate your workflow class. In the next section,

you’ll be creating and implementing the methods in your

workflow business class.

3.2.3 Creating Methods and Defining

Attributes, Parameters, and Exceptions

We’ll first start by creating the constructor method in our

workflow business class. This is the most important method

in your workflow class, which gets called every time a new

instance of the class is requested by the workflow runtime.

This class will receive the key field of the object instance (in

this case, the billing document number) and populate the

other instance attributes of your workflow class.

Note

If you’ve defined any static attributes in your workflow

class, then you can use the class constructor method to

populate them.

Create your CONSTRUCTOR method using the Create

Constructor button in your class definition, and then add

the import parameters, as shown in Figure 3.62, by entering

the parameter name (Parameter field) and data type

(Associated Type field).

Figure 3.62 Creating the Import Parameter(s) in the Constructor Method of

the Workflow Business Class

Now refer to the sample code in Listing 3.8 for the

constructor method. You can add your own logic to populate

the instance attributes per your requirement. Note the

population of the MS_LPOR attribute. Here the INSTID is the key

(concatenation in case of multiple key fields) of the object

instance. This field is 32 characters long. So, if your key

field(s) of a business transaction have a combined length

greater than 32, consider creating an alternate key such as

a GUID based on your actual key and using this alternate

key for populating the INSTID of your workflow class.

CONSTANTS : lc_vbtypl TYPE vbtypl_v VALUE 'C', " Document category Sales Order

 lc_vbtyp2 TYPE vbtypl_v VALUE 'G', " Document category Contract

 lc_vbtyp3 TYPE vbtypl_v VALUE 'L', " Document category Debit memo

request

 lc_vbtypn TYPE vbtyp_n VALUE 'M'. " Document category of Subsequent

Document

**Populate LPOR attribute

 ms_lpor-catid = 'CL'.

 ms_lpor-typeid = 'ZCLOTC_INV_RELEASE_ACCOUNTING'.

 ms_lpor-instid = mv_vbeln = iv_vbeln.

* Populating Class attributes

 SELECT vbrk~vbeln, " Sales Document

 vbrk~fkart, " Billing Type

 vbrk~vkorg, " Sales Organization

 vbrk~vtweg, " Distribution Channel

 vbrk~netwr, " Net Value of the Sales Order in Document Currency

 vbrp~aubel, " Sales document

 vbak~auart " Sales Document Type

 INTO @DATA(ls_invoice_details)

 FROM vbrk " Billing Document: Header Data

 INNER JOIN vbrp

 ON vbrk~vbeln = vbrp~vbeln

 INNER JOIN vbak " Sales Document: Header Data

 ON vbak~vbeln = vbrp~aubel

 UP TO 1 ROWS

 WHERE vbrk~vbeln = @iv_vbeln

 ORDER BY vbrk~vbeln.

 ENDSELECT.

*Assigning the class attribute

 IF sy-subrc = 0.

 mv_auart = ls_invoice_details-auart. "Sales Order Type

 mv_vkorg = ls_invoice_details-vkorg. "Sales Organization

 mv_vtweg = ls_invoice_details-vtweg. "Distribution channel

 mv_netwr = ls_invoice_details-netwr. "Net value

 mv_fkart = ls_invoice_details-fkart. "Billing Type

 ENDIF. " IF sy-subrc = 0

Listing 3.8 Sample Source Code for the Constructor Method of the Workflow

Business Class

Next, you’ll implement interface method BI_PERSISTENT~LPOR.

This method outputs the LPOR value to the workflow runtime,

based on the MS_LPOR attribute that you’ve populated in the

constructor method while creating the object instance. As

mentioned before, the LPOR attribute is used by the workflow

runtime to persist the object instance and fetch it into the

object buffer as and when requested by the runtime.

Copy and paste the source code in Listing 3.9 in this

method.

 result = MS_LPOR.

Listing 3.9 Source Code for Interface Method LPOR in the Workflow Business

Class

Next, you’ll implement interface method

BI_PERSISTENT~FIND_BY_LPOR. This method receives the

predefined import parameter LPOR from the workflow runtime

and returns the persistent object instance based on the

instance key (INSTID). Refer to the source code in

Listing 3.10 for this method. This source code may vary

between different classes based on the key field definition of

the object instance. Note the use of the instance buffer

concept (attribute MT_INSTANCE_BUFFER) to improve the

efficiency.

 DATA : lv_vbeln TYPE vbeln_vf, " Billing Document

 lo_instance TYPE REF TO zclotc_inv_release_accounting. " Class for

Invoice Releasing Acoounting

 lv_vbeln = lpor-instid(10). "Assigning billing doc no

 ASSIGN mt_instance_buffer[vbeln = lv_vbeln] TO

FIELD-SYMBOL(<ls_instance>).

* If billing document object instance does not exist in buffer

 IF sy-subrc <> 0.

* Create object instance

 TRY.

 lo_instance = NEW #(iv_vbeln = lv_vbeln).

 CATCH cx_bo_error.

 RETURN.

 ENDTRY.

* Fill the buffer table

 mt_instance_buffer = VALUE #((vbeln = lv_vbeln

 instance = lo_instance)).

 result ?= lo_instance. "Filling the result object

 ELSE. " ELSE -> IF sy-subrc <> 0

* IF billing document object instance exists in buffer

 result ?= <ls_instance>-instance. "Filling the result object

 ENDIF. " IF sy-subrc <> 0

Listing 3.10 Source Code for Interface Method FIND_BY_LPOR in the

Workflow Business Class

The other interface methods in your workflow class are

optional. A brief overview of the purpose of the other

interface methods is as follows:

BI_PERSISTENT~REFRESH

This method can be used to clear the object instance

buffer and force the workflow runtime to load a new

object instance on the next request. This method is

equivalent to an explicit object destructor method.

BI_OBJECT~DEFAULT_ATTRIBUTE_VALUE

This method can be used to populate a default attribute

such as a description of the object instance in the result

parameter of the method. In this example, it could be a

default description such as the customer PO number from

the linked sales order. The value of this attribute is

displayed beside the instance key (billing document

number) when the object link is displayed in the workflow

inbox.

BI_OBJECT~EXECUTE_DEFAULT_METHOD

This method can be used to call a transaction or screen

when the user clicks on the object link from the inbox. In

this example, you can use the method to call Transaction

VF03 to display the billing document. This serves as a

useful navigation link into the object for displaying further

details before approving or rejecting a document via

workflow.

BI_OBJECT~RELEASE

This method is used by the workflow runtime to implicitly

call the garbage collector and delete the object instance

from memory. It serves as an implicit destructor of the

object instance. Normally, no code is required in this

method.

Now that you’ve implemented the constructor and other

interface methods of your workflow class, you can add new

methods that will be called via tasks in activity steps. These

methods can be created as static or instance, depending on

whether they depend on the object instance (key attributes)

or not, but they should always be public as they will be

called from the workflow runtime. An important distinction

from BOR methods is that ABAP OOP methods can’t be

classified as dialog or background and synchronous or

asynchronous. These settings are always entered directly in

the task definition, which is discussed in more detail in

Section 3.3.1.

3.2.4 Adding New Methods for Dialog and

Background Tasks

Now, you can create a method called APPROVE_INV_ACCOUNTING,

which will be called to release the billing document to

accounting once it’s approved via workflow. This method

must be declared as instance and public in its properties.

We won’t create any import parameters as the required data

is already available in the object instance. Export

parameters are also not required in this case. Error handling

will be done via method exceptions. This method will be

called as a background task from within the workflow.

However, technically, there is no difference between a

dialog and background method with respect to the ABAP

workflow class. The only difference is in the purpose. Dialog

methods will perform some action on a screen, transaction,

or app, whereas a background method will perform a query

or update operation without any user interaction. We’ll now

look at the concept of exceptions in workflow classes before

going through our example for creating a new method in the

billing document workflow class.

3.2.5 Method Exceptions

As explained earlier in Table 3.2, there are several standard

exception classes in workflow such as CX_BO_TEMPORARY and

CX_BO_ERROR. You can use these standard exception classes to

raise an exception that will be caught by the workflow

runtime and set the workflow to Error status. However,

these standard classes don’t have any message handling,

so you wouldn’t be able to populate your own message

texts while raising any exceptions. Therefore, it’s

recommended to create your own exception class by

inheriting from the standard class and adding the required

message interfaces. You don’t need any further

customization in the custom exception class. You can reuse

the same exception class across multiple workflows in your

system if you want to.

Figure 3.63 Creation of a Custom Workflow Exception Class Inheriting from a

Standard Exception Class

Figure 3.63 depicts the custom exception class created for

this method exception by inheriting from standard exception

class CX_BO_TEMPORARY. Here, you enter the superclass as

“CX_BO_TEMPORARY” and choose the class category as

Exception Class. The remaining details are the same as

any other ABAP class.

Exceptions for this class type when raised via workflow task

method, will notify the workflow runtime to raise a

temporary exception and set the workflow into Error status.

The workflow can be automatically restarted after the error

by the workflow system job SAP_WORKFLOW_SYSTEM_TEMPORARY in

the job repository.

Add interfaces IF_T100_MESSAGE and

IF_T100_DYN_MSG to this custom exception class, as

shown in Figure 3.64. Enter the interface name directly in

the Interfaces tab.

Figure 3.64 Add the Message Text Interfaces in the Custom Exception Class

Implement the constructor method of the exception class,

and copy paste the source code in Listing 3.11 there.

CALL METHOD SUPER->CONSTRUCTOR

EXPORTING

PREVIOUS = PREVIOUS

CLASS_NAME = CLASS_NAME

INSTANCE = INSTANCE

COLLECTION = COLLECTION

LOG_NO = LOG_NO

LOG_MSG_NO = LOG_MSG_NO

FORCE_DATAFLOW = FORCE_DATAFLOW

.

clear me->textid.

if textid is initial.

 IF_T100_MESSAGE~T100KEY = IF_T100_MESSAGE=>DEFAULT_TEXTID.

else.

 IF_T100_MESSAGE~T100KEY = TEXTID.

endif.

Listing 3.11 Sample Source Code for an Exception Class Using Message Text

Handling

Now your custom exception class is ready to be used within

the workflow business class method.

Add the exception class to method definition

APPROVE_INV_ACCOUNTING in the Exceptions of

Method section of the screen shown in Figure 3.65.

Figure 3.65 Add the Exception Class in the Exceptions of Method Tab

Now implement the method source code, as shown in

Listing 3.12. Note the reference code for raising the

exception using the custom exception class you just

created. Listing 3.12 illustrates a typical example of a

method call from a background task with some API calls for

an update operation and corresponding error-handling

functionality.

CONSTANTS : lc_posting TYPE char01 VALUE 'B', " Posting of type CHAR01

 lc_msgty_e TYPE symsgty VALUE 'E', " Message Type

 lc_msgty_i TYPE symsgty VALUE 'I'. " Message Type

 DATA :

 lt_vbrk TYPE STANDARD TABLE OF vbrk, " Billing Document: Header Data

 lt_komfk TYPE STANDARD TABLE OF komfk, " Billing Communications Table

 lt_komv TYPE STANDARD TABLE OF komv, " Pricing Communications-Condition

Record

 lt_head TYPE STANDARD TABLE OF theadvb, " Reference Structure for XTHEAD

 lt_vbfs TYPE STANDARD TABLE OF vbfs, " Error Log for Collective Processing

 lt_vbpa TYPE STANDARD TABLE OF vbpavb, " Reference structure for XVBPA/YVBPA

 lt_vbrkvb TYPE STANDARD TABLE OF vbrkvb, " Reference Structure for XVBRK/YVBRP

 lt_vbrp TYPE STANDARD TABLE OF vbrpvb, " Reference Structure for XVBRP/YVBRP

 lt_vbrl TYPE STANDARD TABLE OF vbrlvb, " Reference Structure for XVBRL/YVBRL

 lt_vbss TYPE STANDARD TABLE OF vbss. " Collective Processing: Sales

Documents

***Local data declarations

DATA: ls_message TYPE scx_t100key, " T100 key with mapping of parameters to

attribute names

 lv_message_text TYPE char80. " Message_text of type CHAR80

* filling the table with billing no

 lt_vbrk = VALUE #((vbeln = mv_vbeln)).

* removing posting block for accounting release

 CALL FUNCTION 'SD_INVOICE_RELEASE_TO_ACCOUNT'

 EXPORTING

 with_posting = lc_posting "B

 TABLES

 it_vbrk = lt_vbrk

 xkomfk = lt_komfk

 xkomv = lt_komv

 xthead = lt_head

 xvbfs = lt_vbfs

 xvbpa = lt_vbpa

 xvbrk = lt_vbrkvb

 xvbrp = lt_vbrp

 xvbrl = lt_vbrl

 xvbss = lt_vbss.

*Error handling - raise exception

 IF line_exists(lt_vbfs[msgty = lc_msgty_e]).

 ASSIGN lt_vbfs[msgty = lc_msgty_e] TO FIELD-SYMBOL(<ls_vbfs>).

 IF sy-subrc = 0.

 MESSAGE ID <ls_vbfs>-msgid TYPE lc_msgty_i NUMBER <ls_vbfs>-msgno

 WITH <ls_vbfs>-msgv1 <ls_vbfs>-msgv2 <ls_vbfs>-msgv3 <ls_vbfs>-msgv4

 INTO lv_message_text.

*Populate message key for exception

 ls_message-msgid = sy-msgid.

 ls_message-msgno = sy-msgno.

 ls_message-attr1 = sy-msgv1.

 ls_message-attr2 = sy-msgv2.

 ls_message-attr3 = sy-msgv3.

 ls_message-attr4 = sy-msgv4.

 RAISE EXCEPTION TYPE zcx_otc_invoice_bo_error EXPORTING textid = ls_message.

 ENDIF. " IF sy-subrc = 0

 ENDIF. " IF line_exists(lt_vbfs[msgty = lc_msgty_e])

Listing 3.12 Sample Source Code for the Workflow Class Background Method

You can add more methods to your workflow class as shown

here per your business requirement. Next, you’ll add events

to the workflow class.

3.2.6 Creating Events

You need at least one event to trigger the workflow.

Although workflows can be triggered directly via an API, for

custom applications, it’s generally a best practice to use

events for triggering workflow. This is because events

provide an asynchronous delivery mechanism from the

event creator to the event receiver. Event linkage can be

activated or deactivated if required, and events can be

added to the queue (if the event queue is active) to ensure

that the workflow is triggered for all relevant cases.

You can use more than one event for a workflow. In fact, in

many cases, multiple events are used for managing the

workflow. Apart from the triggering event, you can use

terminating events for asynchronous tasks and also use

deleted or canceled events to abruptly terminate a workflow

if the triggering transaction is no longer valid.

For this scenario, you’ll define two events in the workflow

class. Both events will be instance and public. Static events

can be used if the object instance doesn’t need to be

created from the event. The two events are as follows:

TRIGGER_INV_WORKFLOW

This is the triggering event for the workflow. This event

will have one parameter for AUTO_RELEASE. If this parameter

is set by the calling application, then the approval will be

bypassed, and the billing document will be released to

accounting immediately.

CANCELLED_INVOICE

This will terminate the workflow abruptly (via a fork and

wait step) if the invoice is canceled.

Figure 3.66 shows details of events added in the workflow

business class. Here, we’ve entered the event name,

selected the Type as Instance Event, set the Visibility as

Public, and entered a short description for the event.

Figure 3.66 View of Events Added in the Workflow Business Class

In Figure 3.67, we’ve created an import parameter for the

event by entering the name and data type. We’ve also

marked the parameter as optional.

Figure 3.67 Creating an Event Parameter in the Triggering Event of the

Workflow

Now the workflow business class definition is complete. You

can go ahead and unit test the workflow class.

3.2.7 Testing an ABAP Workflow Class

Unit testing of an ABAP workflow class can be done via

Transaction SE24, just like any other ABAP class. You just

need to create an instance of the class by entering the key

fields for testing or executing the instance components.

Figure 3.68 shows the unit test screen of a workflow class

from Transaction SE24. The import parameters of the

CONSTRUCTOR method are available for input here. Once you’ve

entered the parameter values, click on the Create

Instance button.

Figure 3.68 Unit Test Workflow Class from Transaction SE24

Figure 3.69 shows the result screen after the object instance

creation, with the attribute values populated. Now you can

execute and test any instance methods from the class.

Now you can execute your instance methods (enter

parameters if any) and debug the code if required.

Figure 3.69 Instance Creation of the Workflow Class

3.3 Task Definition

In workflow terminology, tasks are the basic building blocks

of a process flow. Tasks can be single-step or multistep, and

accordingly they are more commonly classified as standard

tasks or workflow templates. You can create standard tasks

or workflow templates from Transaction PFTC.

In this section, we’ll be discussing single-step tasks, or

standard tasks, and sometimes refer to them simply as

tasks. Tasks can exist standalone or can be part of a

workflow definition as an activity step. These objects can

execute your BOR or ABAP class method in a workflow

definition. Methods with result parameters, also called

functional methods, can be called via expressions in a

condition step or in a container operation step of a

workflow, but normal method calls are possible only via

tasks in the workflow.

Apart from activity steps, tasks are also implicitly created or

used in user decision steps and send mail steps in a

workflow definition. These tasks refer to some standard BOR

method and are used to execute some typical standard

functionality in a workflow. For example, the user decision

step allows the user to review a document sent for approval

and then approve or reject it by clicking on the

corresponding button. They can add some supporting

comment to justify their action. This type of task always

executes the standard BOR method PROCESS of BOR type

DECISION. Similarly, the send mail steps in workflow are used

to send a notification via workflow. This step always

executes the BOR method SENDTASKDESCRIPTION2 of BOR type

SELFITEM.

For executing your own BOR or ABAP class methods, you

normally create an activity step in a workflow that executes

a task, or the task can exist standalone and be called

directly from a triggering event. In the next few sections,

we’ll specifically look at how to define a standard task. We’ll

also discuss the most common settings specified at task

level and their implication in the workflow.

3.3.1 Defining Standard Tasks and Task

Settings

Standard tasks can be created from Transaction PFTC. While

creating a task, you enter the Task type as “TS – Standard

Task” and enter a name per your naming convention, for

example, “ZTSRelInvoic”. Then, click on the Create button

in the toolbar.

Under the Basic data tab of the task definition, enter the

following details:

Name

This is a short description of the task, for example,

“Release Invoice to Accounting”.

Release Status

This field is purely for reference to the developer and

doesn’t drive any functionality of the task. You’ll normally

set the Release Status to Implemented for custom

task definitions. For SAP standard tasks, if the Release

Status is Modeled or Obsolete, then it can indicate that

the task isn’t used anymore.

Work Item Text

This is the subject line of the work item that is created at

runtime from the task. Depending on whether the task is

dialog or background, the work item text is either visible

in the workflow inbox as a subject or only on the workflow

log. The work item text can use any variables from the

task container element.

Object Method

In this section, you select the Object Category as BO

BOR Object Type or CL ABAP Class according to the

approach that selected. Then, in Object Type, enter

either the BOR object type name or the ABAP class name,

and enter the corresponding method name in the Method

field. As soon as you press (Enter), the other task settings

are populated (if it’s the BOR object type) such as

Synchronous or Asynchronous and Dialog or

Background. For BOR types, these settings are derived

from the underlying BOR method definition and are

noneditable in the task definition. For ABAP classes, the

method doesn’t have any setting for dialog/background

and synchronous/asynchronous, so these settings are

entered at the task level.

Confirm end of processing

This setting, along with the Executable with SAPforms

setting is mostly obsolete. The Confirm end of

processing checkbox was used for dialog tasks to add a

confirmation popup to the task processor that would

indicate the completion of processing for the work item,

removing it from their inbox. If the task processor doesn’t

confirm, then the work item remains in his inbox.

Let’s create a standard task for the billing document release

workflow, where you had created the custom class

ZCL_INV_REL_ACCOUNTING in Section 3.2.1. This will be a

background task that will call method APPROVE_INV_ACCOUNTING

and release the billing document to accounting. Create the

task by entering a short ID (Abbr.) and the other details, as

shown in Figure 3.70. Note the task ID and the binding

editor button . Once you save the task, a number is

generated based on the prefix number customizing in

Transaction SWU3. The Task is marked as Synchronous

and Background by selecting the checkboxes

highlighted. In addition, the billing document number is

added as a variable in the work item text by selecting from

the default object type element in the task container.

Figure 3.70 Basic Data Definition of a Standard Task for the Workflow

1

2

3

4

Let’s now look at some additional settings and tabs, as

follows:

Binding editor

Binding at the task level maps the container elements

from task to method and back from method to task. This

means that the data flows from task container elements

to the method import parameters and then the method

export parameters are returned back to task container

elements. The Binding editor button is visible in the

Object method section under Basic data tab, if the

underlying object method has any parameters. If the

method doesn’t have parameters, then the Binding

editor button isn’t displayed.

In our example, method APPROVE_INV_ACCOUNTING of class

ZCL_INV_REL_ACCOUNTING didn’t have any parameters, so the

Binding editor button isn’t displayed. However,

Figure 3.71 and Figure 3.72 from another task show the

binding option in standard tasks.

Figure 3.71 Binding Editor Button in the Standard Task Definition

In Figure 3.72, the top half of the binding editor maps the

task container elements to the method import parameters

and the bottom half of the binding editor maps the

method export parameters to the container elements.

Figure 3.72 View of Binding Editor for Mapping Task and Method

Container

Container

The task container lists elements used to hold the data at

the task level. There are many standard container

elements that come with a task definition; the most

important one is the _Wi_Object_ID element, which is a

system element for the BOR object type or the ABAP class

that is entered in the Object method section of the task

definition. This element contains the instance of the task

object type. Similarly, the _Wi_Actual_Agent element stores

the actual agent after the execution of a dialog task, and

the _Attach_Objects element contains the instance of all

attachment objects (of BOR type SOFM) that are linked to

the task. You can also create custom container elements

to receive data from the workflow container or event

container. These container elements on the task can be

used for many purposes:

Explicit and implicit data mapping to the method

container for method execution. The object type

instance from _Wi_Object_ID is implicitly passed to the

method, but additional method parameters must be

maintained in the binding definition.

Task container elements can be used in the work item

text or the work item description. Refer to Section 3.3.2

for further details.

Attachment objects mapped to _Attach_Objects element

are available to the user executing a dialog task for

review.

The _Rule_Result container element returns the agents

from the Role resolution based on Default Rules

maintained in the task under the corresponding tab.

Triggering events

This tab is only relevant for single-step tasks where the

task is triggered by an event. In this case, you need to

maintain the triggering event from the BOR object type or

ABAP class and then maintain the binding between event

container and task container. The event linkage can be

activated directly from this screen like a workflow

definition.

Terminating events

This tab is relevant for asynchronous tasks that require a

terminating event to complete the execution and return

the control back to the calling step in the workflow. Here,

you enter the container element that must have the type

of the BOR object type or ABAP class defining the

terminating event. Binding can be maintained between

the event and task container to receive the object

instance along with any event parameters into the task.

Refer to Chapter 5, Section 5.4, for more details on

terminating events.

Default rules

If your process flow consists of a single-step dialog task

only, then you’ll use the default rule mechanism to

perform the agent determination for the task. Here, you

must enter the rule number, which has been previously

created in Transaction PFAC and then maintain the binding

between the task container and rule container for the

import parameters of the rule. There are several other

less frequently used types of rules that can also be

maintained at the task level, for example, the recipients

for missed deadlines. Refer to Chapter 6, Section 6.3, for

more details on default rules.

3.3.2 Work Item Text and Description

Work item text is the subject line of a task, which describes

in short, the primary objective of the task. For a dialog task,

this normally describes the action required on a document

from the selected agents of the task and is visible to the

users in their workflow inbox. Some parts of the work item

text can be static while other parts can be variable based on

elements inserted from the task container. For a background

task, this text is usually visible from the workflow log,

except for send mail tasks, where the work item text is the

email subject line to the recipient’s email inbox.

Work item description is the long text of a task, which

explains in detail the purpose of the task along with details

of the transaction, information on previous approvers (if

any), comments or notes, and any other details relevant for

that task. For a dialog task, these details provide the

approver with all the necessary information for executing

the task. For a background task, this information is usually

for the administrator’s reference, except in the case of a

send mail task, where the task description is sent out as the

body text of the email.

Along with the task description, other runtime objects that

can be sent out in a dialog task include attachments and

object links. Object links are BOR or ABAP class objects that

are attached as a hyperlink on the task via the _Wi_Object_ID

container element or any other object type container

elements in a task. When the user clicks on the hyperlink for

this object, it navigates to the transaction called by the

default method (usually DISPLAY) on the BOR type or ABAP

class. Attachments are documents such as Microsoft Office

documents, text files, and PDF files that can be attached

programmatically or by a user to a workflow step. These

attachments provide supporting documentation for the

subsequent approvers in a workflow.

Figure 3.73 and Figure 3.74 show a couple examples of work

items from a user decision step and a send mail step in a

workflow, respectively. Figure 3.73 shows the view of a work

item text and description for a user decision step in a

workflow from the My Inbox app. It also provides icons for

attachments and object links .

Figure 3.74 shows the view of the work item text and

description for a send mail step in workflow from Outlook

inbox.

1 4

2 3

1

2

The task description can be maintained like any other long

text objects in SAP. Here, the variables can be inserted using

the Expression button (see Figure 3.75), which allows you

to select task container elements along with some common

system elements such as date, time, client, user ID, and so

on.

Figure 3.73 View of Work Item Text and Description for a User Decision Step

in the Workflow from the My Inbox App

Figure 3.74 Work Item Text/Description for a Send Mail Step in the Workflow

from the Outlook Inbox

Figure 3.75 View of Task Description with Long Text Maintained Using Task

Container Elements as Variables

You can also add some simple conditions in the work item

description with IF-ENDIF statements using the command-

line format /:, as shown in Figure 3.76. If you enter the text

format as “/:”, then the text is treated as a command line. In

the example in Figure 3.76, the following is true:

The command line IF &ZWCINVOICEBO.MV_BUYER_MANAGER& NE

&SPACE&. checks whether the value of the task container

element is or isn’t blank.

Then, the following line without any format, and manager

&ZWCINVOICEBO.MV_MANAGER_NAME&, is the text that is inserted in

the work item description if the preceding condition is

true.

Following the command line, ENDIF closes the condition

started using command line IF.

If the condition in the IF command line evaluates to false,

then the following text line isn’t inserted in the work item

description at all. In addition, the command lines

themselves don’t appear in the work item description at

runtime.

Figure 3.76 Task Description with Conditional Text Using IF-ENDIF

Command Lines

3.4 Summary

In this chapter, we explored the two different approaches for

building the business logic in workflow. First, we explored

the BOR type approach by looking at key definitions, a step-

by-step guide to building a custom BOR type with

components, creating a subtype of a standard BOR type,

delegation, unit testing, and BOR programming details.

Next, we looked at the ABAP class approach, with a step-by-

step guide to building a workflow business class,

implementing standard methods, creating custom attributes

and methods, and unit testing the class. Finally, we’ve

looked at the steps to create a standard task in the workflow

with all its attributes and settings, as well as how to define

work item text and description in a standard task.

4 Defining Workflows and

Adding Steps

This chapter teaches you how to create workflows with

the Workflow Builder, an essential tool used to create,

display, and process workflows. You’ll become familiar

with the tool and then define a workflow by adding

steps, tasks, and enhancements. You’ll also learn to

execute and test your own workflows.

We’ll start this chapter by explaining how multiple

activities/steps can be stitched into an integrated process

flow in the Workflow Builder. A workflow consists of a set of

tasks. Each task has a purpose to complete one activity and

move to the next step. The data/information from one step

to the next is sent via container. This contains the workflow

lifetime information and is the mechanism to flow the static

and instance-specific information from one step to another

throughout the lifecycle of the workflow. One of the main

purposes of the workflow is to connect sequential/parallel

user activities automatically, so that the person responsible

for the next step doesn’t need to check when he needs to

perform his activities. But if a responsible person doesn’t

complete his tasks, then deadline monitoring can be set up

to remind the responsible person to complete the activities.

Deadline monitoring is also used for escalation management

and proper routing of tasks if the current owner isn’t

completing his task.

We’ll discuss in this chapter the common components of

workflow, how the end-to-end flow works with exchange of

data, and how the workflow can be configured to continue

execution if it’s stuck due to the inactivity of the current

activity owner.

4.1 Workflow Builder

The Workflow Builder provides a graphical view of end-to-

end activity integrated steps in one central tool. This will

help to create, display, change, and test any workflow.

The Workflow Builder is accessed using Transaction SWDD.

You can also use menu path Tools • Business Workflow •

Development • Definition Tools • Workflow Builder •

Workflow Builder to open Workflow Builder. Figure 4.1

shows the Workflow Builder and the different navigation and

workflow components needed to build a workflow.

Figure 4.1 Workflow Builder Sections

The Workflow Builder has different sections that help you

navigate through the flow and also create the components

to build the workflow. The following describes and illustrates

the different sections of Workflow Builder:

Information Area

This area contains the workflow number and version of

the workflow. The current active version is loaded when

Workflow Builder is open by default, but you also can

select the previous version to view. The workflow follows

the execution path as the active workflow when it’s

triggered. For example, the system triggered a workflow

on November 1, 2023, and the current version of the

workflow is 000. The workflow will start the activity flow

per the active version (000). Let’s say the developer

changed the workflow by adding a few more steps and

created another version called 001. So, the new active

version will be 001. Any new workflow triggered will follow

the 001 process flow steps. But the workflow triggered on

November 1, 2023, will follow the 000 version. So, it may

be needed to view the earlier version of the workflow for

any old active workflow troubleshooting. Figure 4.2 shows

the Information Area, which is normally found in the

top-left corner of the Workflow Builder screen.

Figure 4.2 Workflow Builder: Information Area

Navigation Area

This section shows all the steps in the workflow. You can

go to the details of the steps by clicking Steps in this

section. The workflow graphical diagram can be complex,

and navigation to a particular step from the workflow

graphical diagram can be time-consuming. This area

helps with quick navigation. It’s important to provide a

meaningful and easily identifiable step name so that

navigation to the right step is easy. A number is

associated with each step and is available in the technical

log of the workflow. This will help to easily connect a

workflow log step to the details view of the step in the

workflow definition. Figure 4.3 shows the two steps of

workflow WS20000075 in our example.

Figure 4.3 Workflow Builder: Navigation Area

Step Types That Can Be Inserted

Step Type is shown by default when you open Workflow

Builder. It shows all the possible step types that can be

inserted in the workflow. You can drag and drop any

specific step into the location where you want to add the

step in the workflow graphical area. You’ll get a plus (+)

sign in the workflow graphical area where the step can be

added. You can select any existing step in the workflow

graphical area and double-click on the new step needed,

which will create a new step after the step you selected

earlier. Figure 4.4 shows the possible step types that can

be added in the workflow. The details of each step will be

discussed in Section 4.2.

Other information can be displayed in this section besides

step type. You can click the button just above this section

to get the options of more information that can be

displayed in this section. You can switch into the view you

want to display in this section depending on your need.

Figure 4.5 shows the options that will appear when you

click on the gray button just below Navigation Area.

Figure 4.4 Workflow Builder: Step Types

Figure 4.5 Workflow Builder: Other Components List

As Figure 4.5 shows, you can choose different components

that can be shown in this area. The details of those

workflow components are as follows:

Workflow Container

The workflow container stores all the data elements

defined within the workflow instance. This is similar to

the data variable you define for any development.

There are some container elements created

automatically when a workflow is created (e.g.,

business objects), but there are also some custom

workflow containers that are also needed to pass the

information from multiple steps. Workflow container

elements are used to pass information from the main

workflow instance to different steps. It’s also used for

dynamic content of any description and texts.

My Workflows and Tasks

This list shows all the workflows you’ve

created/changed.

Document Templates

There is a step type called document form templates.

All the workflow document templates that can be used

for the document form template step is shown here.

Workflow Wizard

If you want to create workflows using a wizard, you can

try out this section. All possible standard workflow

wizards are available here.

Teamworking

If multiple people are working on the same workflow,

you can find out who has changed any step. You can

find out those steps in the workflow with different

search criteria such as last changed by, created by, and

so on.

Workflows of this Definition (Outcome)

All the current running in-process workflows for this

workflow definition are shown in this section.

Note it!

You can create notes and documents about this

workflow in this section.

Message Area

The bottom part of the screen shows the

error/warning/information messages during the activation

or syntax check of the workflow.

Overview

The rightmost part of the pane shows the entire workflow

in one pane. You can zoom within this section, and the

zoomed portion will be displayed on the Graphical

Model section. You’ll find a green rectangular box

highlighting the zoom area. This will be very helpful for

zooming into a portion of the workflow when it has lots of

tasks and complex and not readable in one frame. Then

you can zoom onto the required section and further

navigate into details from the Graphical Model view.

Graphical Model

The middle part of the screen shows the graphical

workflow, including a zoomed view. This section is used

for further detailed navigation into tasks and other

activities.

It’s recommended to design and model the workflow activity

flow before you start creating the building blocks in the

Workflow Builder.

Note

The Workflow Builder graphical view is used to understand

the end-to-end workflow process flow. It’s also used to

understand current state and historically completed steps

during workflow error troubleshooting. If you want to

develop a complex workflow with lots of steps, try to

develop multiple subworkflows and integrate them with

the main workflow to help with readability.

4.2 Common Workflow Steps

Steps are the building blocks of a workflow and are needed

to model the workflow. Table 4.1 illustrates the different

steps used to build the workflow.

Step Type Step Icon Step

Functions/Purpose

Activity Any task or subworkflow

can be executed using

this step. This is the

main processing unit of

the workflow. Runtime

data is passed from the

workflow container to

the activity

(step/subworkflow)

container, and similarly

data can be passed

back from the

task/subworkflow

container to the main

workflow container after

the activity is complete.

The activity step can be

used for any

background/user action

processing.

Step Type Step Icon Step

Functions/Purpose

Web

Activity

This step is used to

send the data as an

XML document. Any

container element with

ABAP Data Dictionary or

XML_DOC as the data

type reference is sent

as an XML message. If

the Wait for Feedback

checkbox is set, the

associated work item

for the step is only

completed once the

XML response is

received.

Send Mail This step is used to

send any mail. The mail

can be sent to any

external main address

or organization object

(e.g., position, job, user

ID, etc.). The recipient

can be dynamically

passed using the

workflow container.

Step Type Step Icon Step

Functions/Purpose

Form You can display the data

in the workflow

container in the form.

The form can be opened

in display or in edit

mode. Users will have

Approve and Reject

buttons to process the

form. Use the workflow

wizard to generate the

basic form, and then

make changes in the

form for additional

requirements. The to

and from data

transmission can be

done using the workflow

container element.

User

Decision

This step creates a work

item that the user can

take action on. The

work item contains

relevant text for users

to make decisions. Any

dynamic value can be

added in the text using

the workflow container

element, and the user is

Step Type Step Icon Step

Functions/Purpose

provided with options to

use in making a

decision. The number of

processing branches are

created based on the

number of options given

in the user decision.

Each action from the

user can be processed

in a separate workflow

branch. User decision is

the easiest way to

create a step to get

approval/rejection or

any other action from

the user. If the user

doesn’t need to

add/edit any

information during

approval, this step can

be used.

Step Type Step Icon Step

Functions/Purpose

Document

from

Template

This step can use the

document created in

the local application

and passed through the

workflow. The document

can contain variables

that are dynamically

filled by the workflow

container element. You

have to create the

template when you’re

creating this step. The

document is opened in

the local application

when the work item is

executed. The

document is then saved

in the workflow

container once it’s

completed.

Step Type Step Icon Step

Functions/Purpose

Condition Condition is used to

branch the process flow

into two separate flows.

Container element

variables can be used to

define the condition.

The outcome of the

condition comes in the

form of True and False.

The processing of the

branch is carried out

accordingly.

Multiple

Condition

This is similar to the

Condition step. You

create multiple

branches of the process

flow based on a

container element

value. If a value isn’t in

the list of predefined

probable values, then a

separate branch of

another value is used to

process.

Step Type Step Icon Step

Functions/Purpose

Event

Creator

This step is used to

trigger events of the

same or another

workflow. The event

you’re triggering should

be registered against

the business

object/class. The

business object/class

information is passed

using the workflow

container. This should

not be used for a wait

event in a different

branch in the same

fork. It can be used to

start another workflow

or pass event

information between

other subworkflows and

different branches of

the workflow process.

Step Type Step Icon Step

Functions/Purpose

Wait for

Event

This step waits for a

specific event to be

triggered by the

system. If there are

dependencies with

other steps not in the

same fork, then use the

Wait for Event step to

take care of those

dependencies on other

parallel activities. The

object for which the

event should be

triggered needs to be in

the workflow container.

The container element

from the triggered

event to the workflow

container can be passed

using a container

binding.

Step Type Step Icon Step

Functions/Purpose

Container

Operation

This step is used for any

arithmetic operation on

the container element.

There are two options of

container operation:

Assign and Append.

For Assign, the

calculated outcome is

to replace the existing

content of the container

element. The Append

operation can only

happen for a multiline

container. It will add the

calculation outcome

into the existing

container element as a

new line.

Process

Control

This step is used to

cancel and terminate an

in-process work item or

workflow. There are a

few scenarios that can

be handled using

Process Control:

Cancel work item

This will cancel

another work item

Step Type Step Icon Step

Functions/Purpose

located in the same

fork. There won’t be

further processing of

any subsequent steps

of the work item that

is canceled. The step

number of the

workflow is

maintained in the

Workflow Step field

of the Process

Control step.

Set work item to

obsolete

This sets another

work item status to

Completed in the

same workflow. You

have to enter the

workflow step number

that should be

completed. The

subsequent step of

the completed work

item continues

processing if the

branch processing is

obsolete. So, there

should be a

Step Type Step Icon Step

Functions/Purpose

processing obsolete

exception handled in

the work item.

Normally, it’s not

used to set the

Completed status of

any work item in the

same fork; instead,

it’s used to set the

Obsolete status and

continue processing

in another part of the

same workflow.

Terminate workflow

This terminates the

current workflow and

sets the work item

status to Logically

Deleted. There won’t

be any subsequent

processing of this

workflow. But if it’s a

subworkflow, then the

parent workflow

continues the

execution, and all

container element

binding is updated

before the

Step Type Step Icon Step

Functions/Purpose

subworkflow is

completed.

Cancel workflow

This is similar to

Terminate

workflow. But if it’s a

subworkflow, then the

parent workflow

branch containing

this workflow won’t

be processed further.

Step Type Step Icon Step

Functions/Purpose

Process

Control

(Cont.)

Cancel workflow

(including all

callers)

This step cancels all

work items in the

current workflow and

updates with a status

of Logically

Deleted. It also

cancels all the work

items of the parent

workflow and the

parent workflow as

well.

Throw exception

You can trigger local

event or exceptions

defined in the

version-specific tab of

the workflow. You

have to handle the

exception in a

separate block.

Step Type Step Icon Step

Functions/Purpose

Loop

(Until)

This step is used to loop

the sequence of

activities till the loop

exit condition is met. At

least one execution of

steps is carried out

before you can exit

from the loop. You have

to enter the condition of

exit in the condition

editor. The outcome of

the condition will be

either True or False.

Step Type Step Icon Step

Functions/Purpose

Fork A fork is created when

there is a need for

parallel processing by

multiple users. You can

define how many

branches are

mandatory to complete

the entire block of the

fork. You can also enter

any condition to

terminate the workflow.

If either number of

mandatory branch or

exit condition matches,

then it completes the

fork execution and

moves to the next step

in the workflow.

Step Type Step Icon Step

Functions/Purpose

Ad Hoc

Anchor

You can define the

workflow that can be

dynamically triggered in

this step. An authorized

person can replace the

ad hoc anchor with one

of the possible

workflows maintained in

this step. This new

workflow doesn’t

replace the existing

workflow. It works

similar to a

subworkflow, and all the

steps of this added

workflow are inserted

into the main workflow.

The container element

of the added workflow

should be identical to

the main workflow.

Step Type Step Icon Step

Functions/Purpose

Block This is used to group

multiple steps together.

Block can have a local

container element that

can be used by all the

steps within the block,

but isn’t available in the

main workflow

container. Any container

element can be passed

to and from the main

workflow container

using container element

binding. Block also has

a deadline monitoring

capability for the entire

block consisting of all

steps.

Step Type Step Icon Step

Functions/Purpose

Local

Workflow

This is triggered from

local events within the

main workflow. These

aren’t reusable for

multiple other

workflows. This is

mainly used for

exception handling. Any

container element can

be passed from the

main workflow to the

local workflow using

container element

binding.

Table 4.1 List of Commonly Used Workflow Steps

Let’s walk through a standard workflow with some key steps

and see how the entire workflow is designed. The standard

SAP system has one framework workflow WS10000051 for

financial accounting document parking and release. It

handles document amount release and account assignment

approval through this workflow. The framework workflow

uses other standard workflows depending on the level of

approval needed (one level, two level, or three level

approval). We won’t go through the entire functionality of

document parking. We’ll focus on how the building blocks

are used to design the workflow.

You can open the workflow from Transaction SWDD. Enter

the workflow number “WS10000051” in the information

area, and press the (Enter) key. Figure 4.6 shows the

document parking workflow WS10000051.

The workflow has lots of steps. You have to zoom in on the

overview area so that it’s readable in the Graphical Model

frame.

The Workflow Builder can be opened from Transaction PFTC

also, as well as via menu path Tools • Business Workflow

• Development • Definition Tools • Tasks/Task Groups

• Display. Here, enter Task type as “Workflow Template”,

and then enter the workflow number in the Task field.

Finally, click on Display. Figure 4.7 shows the Transaction

PFTC screen where you have to enter the workflow details.

Figure 4.6 A Sample Workflow View in Workflow Builder

Figure 4.7 Open Workflow Builder from Transaction PFTC

This screen will display the technical details and attributes

of the workflow. You can add/modify container element and

triggering events in this view. You can also navigate to the

workflow graphical view by clicking the Workflow Builder

button in this screen. Figure 4.8 shows the technical details

of the sample workflow WS10000051 we’re referring to here.

Click on the Workflow Builder button to navigate to

workflow graphical screen.

You have to first think how the workflow will be triggered. If

you find the icon in the Workflow Builder, it

means this workflow can be triggered using an event. You

can double-click on this icon to navigate to the event. To

add a triggering event, choose Goto • Basic Data •

Version-Independent (Task) • Start Event. You can

define the triggering event, container element binding, and

activation of triggering event here. Figure 4.9 shows the

triggering event mapping for workflow WS10000051. You’ll find

the details about triggering events in Chapter 5 and

container elements in Section 4.4 of this chapter.

Figure 4.8 Workflow Technical Details View

Figure 4.9 Workflow Triggering Event Mapping

Next, you have to design the flow of the process and

different activities of the workflow. You can’t just add up

steps without having a view of the overall design and flow of

the process because you’ll end up with a complex workflow

diagram, making it difficult to manage that workflow in the

future. You have to think of the number of reusable steps,

number of parallel branching, and exception handling before

you start creating any steps. You may think of creating a

subworkflow for reusable steps to make it more modular.

Determine the user activity steps and exception flow before

creating other background steps.

You can start building a workflow with two branches: one for

normal processing and the other to handle any

deletion/withdrawal of the business transaction, if there is a

scenario to delete the document. In our scenario, a 1 From

2 fork is used. One branch is waiting for any deletion event

and the other branch will post the financial accounting

document after successful approval. Figure 4.10 shows the

workflow starting with two branches: one is waiting for

deletion, and the other is the normal processing branch.

Figure 4.10 Workflow with Fork, Wait for Event, Activity, and Loop Steps

Double-click on the fork step (1 From 2) to see the details

of the Fork step. Figure 4.11 show the details of the Fork

step in our example. The number of Parallel Branches is 2

and Necessary Branches is 1. That means the workflow

will move to the next logical step if one of the two branches

is complete. If Necessary Branches is set to 2, then the

workflow will wait for completion of both branches before

moving after the logical steps of a Fork.

Now we’ll discuss when and how you can build a

subworkflow. The example we’re discussing is related to

financial accounting document park and post. SAP has

provided three level approval scenarios for document park

and post. The main framework workflow is delivered with

WS10000051. It’s calling different subworkflows depending on

the level of approval needed. There are three subworkflows

created: WS10000052 (single step approval), WS10000053 (two

step approval), and WS10000054 (three step approval). In our

scenario, main workflow WS10000051 is calling the

subworkflow dynamically.

Figure 4.11 Workflow Step Fork Details

Figure 4.12 shows the background task that is determining

the subworkflow to be called and subsequent call of the

subworkflow. The background step, Determine Amount

Release Subworkflow, determines the subworkflow based

on the approval level needed depending on the

configuration. The subsequent step, Call Amount Release

Subworkflow, calls the subworkflow that is determined in

the earlier background step.

Figure 4.12 Use of Subworkflow and Background Task

Background task TS00007913 is created to determine the

subworkflow, and it passes back the subworkflow number to

the main workflow. Figure 4.13 shows the background Task

TS00007913 details and container element binding. The

method assigned to the background task determines which

subworkflow to be called. This subworkflow number is

passed through container element &ACTIVITY_000043_TASK&.

The determined subworkflow number is passed in the

subsequent Call Amount Release Subworkflow whose

technical details are shown in Figure 4.14. This variable

containing the subworkflow number is passed into the

Expression for Task field. This mapping will dynamically

call the subworkflow. The subworkflow interface should be

compatible with the workflow in the Interfaces

Compatible With field so that proper container mapping

can happen. If the Expression for Task field is empty, then

the task entered in the Control tab is considered for

execution.

Figure 4.13 Workflow Task Control Information and Container Element

Binding

Figure 4.14 Calling the Subworkflow Dynamically

4.3 Adding Tasks

In this section, we’ll discuss the purpose of the different tabs

in a step and how a step can be inserted. You can drag and

drop any step from the Step Types That Can Be Inserted

list on the left side onto the outcome of the preceding step.

Alternatively, you can select the outcome node and double-

click on the step type that you want to add. It will open up

the details screen of the step type where you’ll enter all the

necessary information and save it.

4.3.1 Adding an Activity Step

A step of type Activity is the main step for any workflow.

We’ll discuss the key attributes that should be maintained

during an Activity step creation in the following lists of

tabs:

Control

Figure 4.15 shows the attributes of the Activity step’s

Control tab. The Control tab contains the attributes

related to execution of the task.

Figure 4.15 Activity Step Details: Control Tab

Here are the key attributes you have to maintain in the

Control tab of Activity step:

Task: Enter the workflow task or subworkflow that will

be executed when this step is processed.

Step Name: Enter any meaningful description of the

step.

Binding (Exists): This is used to map any workflow

container element to the task container element and

vice versa. A task won’t be able to access any workflow

container variable if it isn’t passed through container

binding.

Agents: This will determine who gets the workflow

item. This is needed if the task is a foreground task. For

a background task or subworkflow, this information isn’t

needed. There are several ways to determine agents.

Rules are the most dynamic way. Figure 4.16 shows the

possible type of agent determination. See Chapter 6 for

more details on agent determination.

Task Properties: This property comes from the Task

property.

Agent Assignment: You have to add the list of

possible agents here. Click on the task button next to

Agent Assignment. All possible agents should be

updated here. Otherwise, the user won’t receive the

work item even if the agent determination rule

successfully identifies the agent.

Task Description: This comes from the task

description maintained. This description appears as the

work item description in the inbox.

Figure 4.16 Different Agent Determination Types

Details

Figure 4.17 shows the Details tab attributes. The Ad Hoc

Specification Determination section is used for

dynamically calling the task. Other sections are populated

by default and normally don’t need any change.

Figure 4.17 Activity Step Attributes: Details Tab

Ad hoc specification is needed when a task or

subworkflow needs to be called dynamically. If this is

empty, then the task/subworkflow entered in the Control

tab is called for execution. The dynamic task/subworkflow

should be compatible with the task mentioned from the

container and business object perspective.

Outcomes

This tab provides all possible outcomes of the task. The

number of branches from this task is determined from the

number of outcomes. If you want to use the Process

Control step, you should use the processing obsolete

outcome. Normally, the processing outcome for a task

comes from being terminated or an internal event

triggered from the method.

Notification

You can send any email notification when the task is

completed. The recipient of the notification can be

determined using any workflow agent determination

procedure.

Requested Start

This tab is used to determine when a work item will be

visible to the end user. If this tab isn’t maintained, then

the work item is available immediately after it’s

generated. For a background task, the execution of this

task starts after the requested start date.

Latest Start

This tab indicates when the users should start processing

their work item. Users should reserve or start processing

the work item, so this is used to send warning notification

if they don’t start processing, that is, opening the work

item. The latest start date will be later than the requested

start date but before the requested end and latest end

dates.

Requested End

This is used to determine when the user is expected to

complete the work item and to send a warning notification

if the user doesn’t complete the work item. Requested

end date should be earlier than latest end date but later

than the requested start and latest start dates.

Latest End

This is used to determine when the user must complete

the work item. This is normally used for the escalation

process where the work item may be forwarded to the

user’s manager for further processing.

All these time-related tabs are related to deadline

monitoring. Deadline monitoring can be done with

warning notifications. Alternatively, it can be modeled on

an outcome, which means a separate branch of

processing is created for the task.

Conditions

This tab is used for exception cases. Additional conditions

can be added to execute or complete a work item. If the

create work item condition isn’t met, then the work item

can’t be executed by the user.

Program Exit

You can execute additional methods during different

phases of the work item. The class should be similar to

interface IF_SWF_IFS_WORKITEM_EXIT. The instance of the

method will contain the event name, for example, before

creation, after creation, after execution, and so on. (Check

the domain of the SWW_EVTTYP field). Custom code can be

written based on the event.

4.3.2 Adding a Send Email Step

You use task type Send Mail to send email to users.

Another option may be to create a background task and use

the standard function module to send email. But the Send

Mail task is easy to build and can be traced in the workflow

log, so it’s the recommended development for the email

send activity.

To create this task, drag and drop the Send Mail activity on

an outcome where you want to send email to an email

address or SAP inbox. You can also select the outcome and

double-click on Send Mail from the Step Types That Can

Be Inserted list to open the screen shown in Figure 4.18.

Figure 4.18 Send Email Step Type

You have to populate the following details in the Mail tab:

Recipients

Three types of recipients are possible: external email

address, organizational object, and workflow initiator. For

organization object, any job, position, organizational unit,

work center, or user can be maintained here. It’s also

possible to determine any kind of organizational unit

dynamically in an earlier background step and pass that

workflow container element in this expression. For

workflow initiator, the &_WF_INITIATOR& workflow container

will be passed as the variable. For an email address, it can

be derived in an earlier background step and passed in a

container element as an expression.

Subject

This will contain the subject of the email. You can add any

variable from the workflow container.

Mail body

The box below Subject contains the mail body. You can

enter any variable from the workflow container.

4.3.3 Adding a User Decision Step

We use the User Decision step when a work item is sent to

the user to make a decision (e.g., Approve/Reject). This is

a simpler way to take user action. The business object can

be linked to the work item to provide the business object

link so that the user can view the transaction in a separate

window in display mode. If the user needs to update the

business transaction, then the user decision may not be

useful. A foreground activity task with transaction screen

needs to be developed.

To create a user decision, drag and drop the User Decision

task type on an outcome where you want a user to decide

on the outcome to proceed to the next step in the workflow.

Figure 4.19 shows a sample of a User Decision step.

Figure 4.19 User Decision Step Type

The tabs of User Decision are similar to the Activity step

with the following differences:

Title

This will appear in the work item text. You can enter four

variables (Parameter 1, 2, 3, and 4 fields) from the

workflow container. Consider the length of the work item

text when you’re adding any variable. The text may get

truncated if the total text length goes beyond the allowed

title length after adding variable texts. To add variable

text, add “&” in the title text.

Agents

Standard workflow agent determination framework is

available here. It’s the same as for the Activity step.

Decision Options

All the decision options can be entered here. This will

create the same number of outcome processing branches.

Control tab

Create a synchronous task using object type DECISION and

method PROCESS. You can refer to standard task TS00008267.

A custom task is needed to map container elements that

can be used within the decision step. The task description

is changed according to the business need.

4.4 Containers and Bindings

In this section, we’ll discuss the data flow between different

components of the workflow. Containers are used to store

data in different sizes and shapes. It can store field values,

multiline lists of field values, references to an object, and

multiline references to an object. The data values in the

container are available in the workflow log. It also helps to

troubleshoot any workflow execution problems. Binding is

the mechanism to flow the container values between

different components of workflow (e.g., event, task, rule,

etc.). Binding is always performed with reference to a

container element. The binding definition is executed at

runtime and is used for transferring data from one container

to another container, along with assigning values to a

container. We’ll discuss more details on different kinds of

containers and how binding occurs between them. Finally,

we’ll discuss custom transformations in binding.

4.4.1 Types of Containers

In general, each building block of a workflow has a

container. Following are the main blocks where containers

are used:

Workflow container for each workflow and

subworkflow

The workflow container is used to pass the information

from one building block to another of the workflow.

Workflow container elements can be filled during the start

of the workflow (through the starting event of the direct

workflow container binding) only through the IMPORT

workflow container element. Normally, the business

object instance is passed to the workflow from the

triggering event. The purpose of the workflow container

can be considered similar to global variables. If any field

value is needed in different steps of the workflow, it’s

defined within the workflow container.

Task container

Task containers bind the value between the method and

the workflow. IMPORT container elements of task containers

are filled from the workflow container, and EXPORT

container elements are transferred back.

Method container

Method containers take the field value from the task

container. IMPORT container elements of the task container

are filled from the task container, and EXPORT container

elements are transferred back.

Rule container

The IMPORT container element is filled from the workflow

container. For the default rule in the task, the IMPORT rule

container is filled from the task container.

Event container

Each event (both triggering and terminating event) has a

container. Events have EXPORT containers only, which

means events can only pass the value to the workflow or

task through this container.

Figure 4.20 shows how data flows between different

container elements within the workflow.

Figure 4.20 Workflow Container and Flow of Data Using Container Binding

Let’s go through this flow in the context of an invoice

approval workflow. A shared service agent creates an

invoice and parks it. The first step of the workflow is a

background task to determine the number of approvals

needed. The second step is the approval step. The agent for

this step is determined using a rule, and this step is a

synchronous approval step. The next step is the second

level approval. This task is an asynchronous approval step.

The agent is determined by a rule. Here’s the process:

1. When the shared service agent saves the document as a

park document, an event is triggered from the

application. In general, two parameters are passed from

the event to the workflow: &_EVT_CREATOR& and business

object &_EVT_OBJECT&. The &_EVT_CREATOR& parameter is

mapped to &_WF_INITIATOR& and &_EVT_OBJECT& to a

workflow container element reference to the business

object. If you’re creating any custom workflow, then you

have to create a container element with reference to the

same business object. This element will be mapped to

&_EVT_OBJECT&. Because this container element is created

with reference to a business object, you’ll be able to

access all attributes of the business object for any

application operation.

2. After the workflow is triggered and the event passes the

container elements, the workflow engine will progress to

the next step, which is a standard background task to

calculate the number of approvers needed. You have to

pass the information to the task and subsequently to the

method that is needed to execute the business

application logic written within the method. Rather than

passing all workflow container elements, pass only the

element that is needed to execute the method. When

the method execution is complete, it passes back the

information required for subsequent steps. For example,

it will pass the number of approval steps needed for the

invoice depending on the invoice amount. Normally, the

task container elements are used for task description,

notification variables, and other task-level actions.

Method container elements are needed to execute the

methods with the task.

3. The next step is to call a step with an agent in a

synchronization task. The workflow engine will first call

the agent determination rule. It will pass the container

element information per binding definition to the rule

engine. The rule determines the agents for the task and

sends that information back.

4. The workflow engine then creates the task and sends it

to the agent for execution. The application information is

bound between the workflow container and the task

container. When the user executes the task, the

corresponding method gets executed, and the

application information flows to the method at runtime.

If any information needs to be passed back to the

workflow for subsequent activity, it’s done by the

container binding between task and workflow.

5. Similarly, if the task is linked to an asynchronization

method, then there is no information flow back from

method container to task container. The task waits for a

terminating event to proceed to the next step. The

terminating event transfers the application data to the

task, and then the task transfers the application data to

the workflow container.

Workflow containers hold all the data used during execution.

The primary purpose of workflow containers is to pass the

business application data from one step to another step via

the workflow container and control the workflow operation.

They are also used for calculations, mathematical

operations, and variable text with the workflow builder

editor, in addition to the following:

The task container is used to provide the dynamic text of

the work item and pass the business application

information to/from the method.

The method container is used to execute the business

application logic written in the method.

The rule container is used to determine the agents for the

work item.

The event container passes the application information to

the workflow.

The event container is also used to troubleshoot the

method executed in the task. Because the workflow is

executed in the background and there is no control to

debug in production environments, some of the

parameters used in the container will help in

troubleshooting the issue.

Note

Try to avoid declaring too many container elements via

IMPORT and EXPORT. Only export the container element that

is needed in the next step and import if any container

element is changed. Don’t import the container element

reference to the business object. The container element

reference to the business object will have the latest

information corresponding to the primary key of that

object.

You can create container elements for each type by going to

its create/change transaction. For example, a workflow

container can be created from a workflow change

transaction. Go to Transaction PFTC. Enter Task Type as

“Workflow Task”, and enter the workflow template number

in the Task field. Then, click on the Change button, and go

to the Container tab. Figure 4.21 shows the attributes of a

container element.

Figure 4.21 Workflow Container

As you can see, the container element can be referenced to

a business object, class, or any kind of ABAP Data Dictionary

objects. Similarly, you can create container elements for a

task. Go to Transaction PFTC. Enter Task Type as “Standard

Task” and Task as the task number. Then, click on the

Change button, and go to the Container tab. You can

create/change container elements for the task here. You can

also define the container element for the method and event

in the business object maintenance transaction. It’s defined

as a parameter of that particular method or event.

To create container element for a method or event, go to

Transaction SWO1, which is used to create/change/display

any business object. In Transaction SWO1, enter the

business object name in the Object type field. Click on the

Change button to display the methods and events created

for this business object. To create a container element for

the method/event, select the method/event, and click on the

Parameter button. You can create/change/display any

container element for the method/event. Figure 4.22 shows

the container element of method EDITHEADER of the

standard business object FIPP as reference.

Figure 4.22 Container Element of a Method

We’ve created the container element for the method. But

how is the container element read within a method? The

container element can be accessed in the program using

macros. You have to go to the method program editor and

write macros to access the container element. Refer to

Chapter 3 to get more details on how to write code in a

method. Use macro SWC_GET_ELEMENT to retrieve the values of

specific container elements in the rule function module or

business object method. As mentioned, you have to write

this macro in the method program. When methods are

executed as part of workflow execution, this macro will get

executed and will read the container element data content.

This will be used in subsequent executions of the method

code.

Here is sample code to retrieve the sales order type from a

container in a rule function module:

swc_get_element ac_container 'ZWCAUART' lv_auart. "Sales order type

AC_CONTAINER is the IMPORT table of the rule function module.

ZWCAUART is the name of the container element. lv_auart is the

local variable where we’re storing the container element

value with the function module for further business

application processing.

Similarly, macro SWC_SET_ELEMENT is used for passing values in

the EXPORT container element.

The workflow-specific code that is executed as part of task

execution can be written in a business object method or in a

class method. For a class method, the container element is

defined as IMPORT/EXPORT parameters of the class. You don’t

have to write any macros to access the container element

value. It can be accessed similar to any IMPORT/EXPORT

parameter you use in any classical ABAP code using a class.

4.4.2 Binding Definition and Binding

Operators

Binding is the mechanism to assign the container variable

value from one step to another. For example, when there is

a need to pass the container variable from the workflow to a

task, then the container element of the workflow container

and task container should be mapped in the binding editor.

Figure 4.23 shows the container binding editor where the

container element can be mapped between source and

target container.

Figure 4.23 Container Binding Editor

Figure 4.23 shows the binding between the workflow

container and step/task container. The binding editor

between event and workflow or between task and method is

similar.

The top-left side of the editor shows the source container

(in this case, it’s a workflow container), and the top-right

side shows the target container elements. There are

different icons for single value containers, table/list

containers, and reference object containers. You can drag an

element from the left container and drop into the target

container . It will automatically create a binding for the

EXPORT side of it. In this example, source container element

&FIPPID& is dragged into target container element

&_WI_OBJECT_ID& from work area 1 to work area 2. It

automatically creates the binding as shown in work area 3

and 4. When you drag an element from the source

1

2

1

2

container to the target container , it will create the

binding from the workflow to the task.

You can also drag and drop a container element from

to and from to . This will also create the binding for

workflow to task.

Similarly, you can drag an element from the right container

and drop into a left container element. This will create the

IMPORT side binding. You can also drag and drop the container

elements into the corresponding EXPORT and IMPORT side of the

binding. When you drag an element from the source

container to target container , it will create the binding

from task to workflow.

You can also drag and drop a container element from

to and from to . This will also create the binding for

task to workflow. Areas and show the container

element binding done for workflow to task, and areas

and show the container element binding done for task to

workflow.

You can click the button to auto-generate the binding, but

it’s not advisable to use this feature. This will try to perform

binding based on the container element data type. This will

unnecessarily create elements and bindings that aren’t

required for your workflow development, so you should

always do the container element binding manually.

You should always do a syntax check of the binding after

completion. Click the syntax check button to check if the

binding is syntactically correct. This will do a compatibility

mapping check of the bonded container elements.

1 2

1

3 2 4

2 1

1

6 2 5

3 4

5

6

4.4.3 Custom Transformations in Binding

The containers are bonded as a value assignment by

default, but there are other complex operations that can be

done during value assignment. In general, this kind of

complex operation during binding isn’t used. Developers

prefer ABAP code to write application logic and any kind of

filtration with the method.

However, these complex operations will help reduce ABAP

coding. You can start with simple container value

assignment and explore other options depending on the

requirement. Click on in the binding editor to get more

container binding options. Container element binding has

two main options:

Expression --> Expression

This is used by default to map each container element

from source to target (see Figure 4.24).

Figure 4.24 Binding Expression Operation

Container --> Container

This enables you to handle the entire container (see

Figure 4.25).

Figure 4.25 Binding Container Operation

When mapping a multiline container element, it’s possible

to access a particular row or column of that multiple table

container using expressions. Standard table index

operations such as &TABLE.[INDEX].ColumnName& are supported

in the binding editor.

4.5 Multiline Elements and Dynamic

Parallel Processing

Some business requirements call for taking a single step in

parallel. This can be a background step or a step that will go

for approval. For example, a purchase order needs to be

sent for approval for each line item. Each line item will have

a different approver. Only once all the approvers approve is

the entire purchase orders approved. Similar kind of

business requirement may arise for any business objects

with line items. You can use the multiline elements dynamic

parallel processing technique to meet this business

requirement.

In this scenario, the business object is a purchase order, and

there will be only one instance of this purchase order. You

have to create a multiline workflow container element that

will contain purchase order line items. Figure 4.26 shows

that the Multiline property should be checked.

Figure 4.26 Multiline Container Element

You can create a background task or map with business

object attributes to populate the line items of a business

object. Once this container element is populated, you

trigger a task for each entry in this container by mapping

this multiline container element in the Miscellaneous tab

of the task, as shown in Figure 4.27. Enter the multiline

container element in the Multiline Element field.

Figure 4.27 Dynamic Parallel Processing with a Multiline Container Element

With these settings, the system will generate one instance

of the task for each entry in this container element. There

are a few questions to keep in mind:

Which task/method will be executed for each

instance of the generated work item?

The task maintained in the Control tab of this activity will

be executed for each instance of this step. So, this

method of parallel execution is applicable when multiple

instances of the same business object execution is

needed.

What container element binding system will be

considered during execution?

The container element binding entered in the Control tab

will be executed for each instance. That means all

instances of the step will have the same data passed to

the method.

How can we pass the current value of the execution

(purchase order line-item number, in this case)

during runtime?

There is one container element that get created

automatically—_Wf_ParForEach_Index&—which store the

current index for dynamic parallel processing. Use this

container element for further processing.

You can maintain an end condition for the dynamic parallel

processing. This is checked when one of the parallel

processing branches is complete.

There are different ways to design parallel processing of

workflows. We’ve talked about the parallel processing of

container elements here. This is normally done when the

same business object is used for parallel processing and the

total number of parallel processing items is unknown. A

single task or a subworkflow can be attached here. For a

simple single activity, a task is attached. If there are

complex requirements of processing and user assignment, a

subworkflow can be assigned.

Another option to achieve the same result is calling a

subworkflow with asynchronous task with a loop. If there is a

need for parallel processing with different steps for each

branch, but you’re aware of the number of branches

needed, then the fork operation needs to be adopted.

4.6 Deadline Definition

A deadline in workflows is mainly used for escalation

management. It handles the scenario of what will happen if

a work item isn’t actioned within a stipulated time. In

general, three subsequent actions can be taken if the work

item isn’t processed in time:

The work item can be processed automatically. If the

approver only needs to approve/reject the work item, this

can be an option depending on business needs. But if the

approver needs to update any information in the approval

form (e.g., update the general ledger account number of

an invoice), then it’s not a practical option. Sometimes,

businesses allow auto-approval for leave of absence and

other HR-related workflows or for very-low-amount, high-

volume business transactions.

An email can be sent to the supervisor as an escalation

email.

The work item can be sent to the current approver’s

manager to take action. When you’re sending the work

item to the next-level manager, you can keep both the

current approver and his manager as the approver for the

work item. You also can only send it to the next-level

manager. It’s advisable to keep the current approver as

well in the escalated work item. Normally, higher-level

managers will take more time to process as they don’t

have all the information regarding the work item. So,

keeping both as approvers will improve the processing

time.

We’ll be discussing in detail the different kinds of deadline

monitoring options in the workflow. There are mainly two

sections of deadline information you have to populate to

activate a deadline: condition to reach the deadline and

action to take when it’s reached.

Figure 4.28 shows how you can set up the date/time when a

deadline will be reached.

Figure 4.28 Deadline Time Calculation

In Figure 4.28, the deadline will be reached after 60 minutes

of the work item creation. Table 4.2 lists the ways you can

provide the reference date/time (Refer.date/time field).

Field Description

Work Item

Creation

Reference date is taken as the work item

creation date and time. Then, additional

time is added per the fixed number of

minutes, days, and so on entered. This is

used in the simple cases where the deadline

isn’t calculated dynamically.

Workflow

Creation

Reference date is taken as the workflow

creation date and time. Then, additional

time is added per the fixed number of

minutes, days, and so on entered. This is

normally not used in the business context.

Field Description

Expression All the fields become editable. You can use

any container element that will help you

dynamically set the deadline. For example,

in a two-step approval process, you want to

set a deadline for level 1 approval after four

days and for level 2 after six days. You’ve

used the same step within a loop. In that

case, you can use a container element to set

the deadline date and time and then pass

that container element in the expression.

Most of the complex business requirements

will need to use this method to implement

deadlines. It’s also easy to change using

some custom configuration tables. You don’t

have to change the workflow all the time to

change the deadline.

No

Deadline

Monitoring

Active

A deadline won’t be triggered.

Table 4.2 Different Options for Calculating Deadlines from a Reference Date

and Time

There are two kinds of outcomes that can be set up when a

deadline is reached. You can send a notification message to

the escalated agent’s SAP inbox, or you can create another

processing branch where you branch out a separate set of

steps.

Figure 4.29 shows the settings to send a message to SAP

inbox when the deadline is reached. To determine the agent

who will receive the SAP inbox message, you can choose the

options similar to the options available for the work item

agent determination (i.e., Rule, Role, Job, Expression,

etc.). You have to maintain the notification text in the

Description tab of the standard task assigned for this step.

Figure 4.29 Action Notification Trigger When the Work Item Deadline Is

Reached

Figure 4.30 shows the settings for a separate branch

(referred to as modeled) when the deadline is reached.

When you select the action as Modeled, a new branch will

be created after the step. You can add more steps in that

branch to execute the next steps.

Figure 4.30 Action Event Trigger When the Work Item Deadline Is Reached

There are four kinds of deadlines that can be implemented

for a work item.

REQUESTED START

If the requested start deadline is active for a dialog work

item, then the work item will appear in the user inbox

when the deadline is reached. For a background task, the

work item will start execution after the deadline is

reached. The requested start deadline determines when

the work item generation/execution begins. It doesn’t

have the option to configure any text or modeled action.

REQUESTED END

This deadline checks if the work item is completed within

the deadline date and time. If not, it will trigger the

deadline action. You can send notification messages or

modeled outcome when the REQUESTED END deadline is

reached. This deadline is normally used to send reminder

notifications to the user to complete the work item. This is

normally not used for modeled outcome.

LATEST START

This deadline is triggered if the user doesn’t open the

work item within this deadline date and time. This is

based on the start of your work item execution and isn’t

the completion of the work item. If a user has just opened

the work item, but didn’t complete the task within the

deadline date and time, then this deadline won’t be

triggered. You can send notification messages or modeled

outcome when the LATEST START deadline is reached. This

deadline is normally used to send reminder notifications

to the user to complete the work item but is normally not

used for modeled outcome.

LATEST END

This deadline checks if the work item is completed within

the deadline date and time. If not, you can send

notifications or modeled outcome when the deadline is

reached.

If any work item misses a deadline, then that work item will

be highlighted in color in the user inbox. That work item will

also appear in the Overdue Entry subfolder in the user

inbox.

You can achieve similar outcomes from REQUESTED END and

LATEST END deadlines, but these were given to serve different

purposes. If you need to use all the DEADLINE options, the

sequence of setting up the time will be REQUESTED START, LATEST

START, REQUESTED END, and LATEST END.

REQUESTED START is generally used if there is some manual

activity to be done before the work item creation, and there

is no way to track that in the system. In that scenario, some

predefined time can be added before the work item is

created. However, the use case of REQUESTED START is very

limited.

Then, the LATEST START deadline is planned. It’s generally

used to send reminder notification messages that the work

item needs to be completed within the specific date and

time. Because this deadline won’t be triggered if the user

opens the work item but doesn’t complete it, in general, it’s

not used for modeled operations.

Next, the REQUESTED END deadline is planned. It’s generally

used to remind the user to complete the work item. You can

also send the notification as an escalation to the next level

along with sending the notification to the current processor.

If you’ve planned to send the notification to both, create a

container element with both IDs, and use it in the

notification expression.

Finally, the LATEST END deadline is planned. It’s generally used

to escalate the work item to the next-level

manager/processor along with the current processor. There

is no change in the processing status of the work item when

a deadline is triggered. The LATEST END deadline won’t send

the due work item to the next-level manager automatically.

So, if you want to send a work item to the next level as an

escalation (because the work item isn’t completed within

the deadline), you have to use modeled action. With

modeled action, you have to cancel the current work item

and regenerate a new work item. You can set new agents

when the new work item is generated.

There is one more scenario to send repeated escalation

notifications until the work item is completed. You have to

use the modeled action in this scenario as well. One set of

deadlines is triggered once for a generated work item. For

example, let’s say a REQUESTED END deadline is triggered, but

the user still didn’t complete the work item. The system

won’t trigger REQUESTED END again for that work item. If that

work item is canceled and regenerated again, then the clock

is reset and the REQUESTED END deadline can be triggered again

for the newly generated work item, but it will reset the clock

for the user. It will be difficult to get with standard SAP

reports how long the work item is pending with the user.

It’s recommended you do a modeled outcome in the LATEST

END deadline and repeatedly send the notifications so that

the escalation mechanism continues to work. Let’s take a

scenario where you want to send escalated notifications

three times with one day intervals to the manager when the

LATEST END deadline is reached. If the work item isn’t

completed in three days after the deadline, then you want

to send the work item to the current processor manager. You

have to follow these steps to achieve this functionality:

1. Set up the modeled outcome in the Latest End tab of

the step, as shown in Figure 4.31.

Figure 4.31 Set Up the Modeled Outcome for the LATEST END Deadline

2. Go to the Outcomes tab, and activate Processing

obsolete (see Figure 4.32).

Figure 4.32 Activate the Processing Obsolete Outcome

This will create two additional branches (Deadline

exceeded and Processing obsolete) of the outcome from

the control step.

You have to create a LOOP step in the deadline exceeded and

send mail using the Send Mail step. Create a container

variable to keep the counter set at three times to send the

reminder notification. Use the REQUESTED START deadline to

send the notification the next day. This is equivalent to

waiting for one day before sending the next reminder.

If the user doesn’t take any action after three reminders,

you want to send the work item to the next level. To achieve

this, you have to set a PROCESS CONTROL STEP after LOOP with

control function Set Work Item to Obsolete. This will

trigger the processing obsolete outcome and will cancel the

current work item. You need a subsequent process to

regenerate the same earlier step with a new set of agents.

If you’re planning to send the work item to a higher

authority as an escalation, you have to consider a fallback

option if no one acts on the work item. Sending work items

to a higher authority as an escalation makes the workflow

complex and maintenance a challenge. So, talk to the

business to come up with an optimized way to implement

deadlines.

It’s also important to have correct and meaningful messages

in the deadline. Sometimes, a developer activates deadlines

as a general practice without a proper notification text. This

confuses the end user, and a high number of production

incidents get created after go live.

In real business scenarios, deadline duration isn’t calculated

based on a fixed seven-day week. It’s based on a user

business calendar that is known as the factory calendar in

SAP. In a global organization, a country-specific factory

calendar will exist. So, consider the user-specific factory

calendar when you’re calculating any deadline duration. It’s

recommended to have a generic task created to calculate

deadline duration for any workflow work item:

1. Decide how you’ll determine the factory calendar for the

user. Factory calendars can be determined from different

sources of configuration, such as from a plant, a user, or

any custom table based on an organizational unit. This is

normally done as a workflow strategy across all

workflows, not just for individual workflow

developments.

2. Create a business object method to calculate the

deadline. Because there are four deadlines possible,

REQUESTED START, LATEST START, REQUESTED END, and LATEST END,

keep the parameters to calculate all four. Then, use

whatever is needed for a particular step. The business

object will be generic and can be used in all workflows in

the project. Create the business object with the following

method parameters to calculate the deadline date and

time:

OFF_RS (offset for REQUESTED START): IMPORT parameter of

number type data definition

OFF_LS (offset for LATEST START): IMPORT parameter of

number type data definition

OFF_RE (offset for REQUESTED END): IMPORT parameter of

number type data definition

OFF_LE (offset for LATEST END): IMPORT parameter of

number type data definition

Normally the deadlines are determined based on days or

hours. So, you can assume the duration unit as hours to

simplify. If you see variations in the duration unit, then

you can pass the duration unit as a parameter, as

follows:

ORG_UNIT (organizational unit or any other parameter to

determine the factory calendar): Determine this

during the design phase of the project and implement

across all workflows.

DL_DT_RS (deadline date for REQUESTED START): EXPORT

parameter of date type data definition.

DL_TM_RS (deadline time for REQUESTED START): EXPORT

parameter of time type data definition.

DL_DT_LS (deadline date for LATEST START): EXPORT

parameter of date type data definition.

DL_TM_LS (deadline time for LATEST START): EXPORT

parameter of time type data definition.

DL_DT_RE (deadline date for REQUESTED END): EXPORT

parameter of date type data definition.

DL_TM_RE (deadline time for REQUESTED END): EXPORT

parameter of time type data definition.

DL_DT_LE (deadline date for LATEST END): EXPORT

parameter of date type data definition.

DL_TM_LE (deadline time for LATEST END): EXPORT

parameter of time type data definition.

3. Implement the method to calculate the deadline date

and time. This building blocks of the method will be as

follows:

Find the factory calendar to be used using the

organization unit or any other custom logic. The input

needed to determine this will be passed as an IMPORT

parameter in the workflow.

Call function module END_TIME_DETERMINE for each

deadline type to determine the deadline date and

time. These values will be exported back to the

workflow.

Bind the deadline value determined in the earlier step

to the dialog step, and use it as an expression in the

Deadline tab.

Maintain the notification text in the Description tab

of the task for each deadline type. You can use any

container element as a variable in that text.

4.7 Summary

In this chapter, you’ve learned how to create a workflow

with all its different steps. We’ve gone into detail about the

different important attributes of the workflow steps, their

purpose, and when to use the different steps. We discussed

the container elements and how the information flows

between different components of workflow. Then, we

specifically covered multiple element containers and how

they’re used for parallel processing of work items. We

focused on escalation management scenarios, which are

done using deadline monitoring in workflows. We looked at

both scenarios of escalation management: (1)

reminders/escalated emails/notifications and (2) send the

work item to the next level for processing.

5 Defining and Triggering

Events

This chapter talks about different triggering

mechanisms for workflow events. We look at each

event-triggering technique in detail with the help of

some practical examples. Then, we delve deeper into

event creators, receivers, event linkage, and how to

attach start conditions to event linkages. We also look

at terminating events and instance linkages and finally

close the chapter by explaining how to use check

function modules and receiver function modules in

event triggering.

An event describes the change in status of an object in the

SAP system, for example, when a sales order is created or

changed or when a purchase order is released. In the

context of this book, we’ll be referring to workflow events

only.

To use an event in a workflow, it must first be defined in a

business object type in the business object repository (BOR)

or in an ABAP object-oriented (OO) class (which implements

the IF_WORKFLOW interface). The event carries information for

the business object (or ABAP class object) instance along

with optional parameters (if relevant), which may be used

by the receiver (workflow, single-step task, or function

module) for further processing steps.

You need the following details to trigger an event in the SAP

system:

Business object type or ABAP OO class name in which the

event is defined

Event name

Key field(s) of the BOR or class required to create the

object instance

Event creator name (by default, this is the current system

user)

Optional event parameters if defined

When you create an event in the SAP system, an instance of

the BOR object type or ABAP OO class is automatically

created via the key field information passed to the event.

This object instance is passed to the receiver application. If

the receiver is a workflow template or a single-step task,

then the event object instance is passed via event container

element _EVT_OBJECT to the workflow container or task

container. Additional parameters (if any) on the event must

be explicitly bound to the receiver container via the event

container element with the same name as the parameter.

Events must be triggered explicitly by the SAP application.

There are various techniques available in SAP to trigger

events, some of which involve configuration steps and

others only pure ABAP code. Whenever an event is triggered

in SAP, you can see it from the event trace Transaction

SWEL (provided the event trace is switched ON via

Transaction SWELS). We’ll discuss the event trace further in

Chapter 8.

In the next section, we’ll discuss the various techniques

available in SAP to trigger events, followed by a section on

the concepts of event creators, receivers, and event linkage.

You’ll learn how to implement a start condition in the

workflow so that you can filter and trigger your workflow or

single-step task only under the exact conditions you prefer.

We’ll introduce you to the concept of terminating events

and instance linkage in the next section. Finally, we’ll talk

about check function modules and receiver function

modules that may be configured against an event linkage.

5.1 Event Triggering Techniques

Following are the common techniques used for triggering

events in SAP (discussed in detail in this section):

Event trigger via change documents: Pure configuration,

no ABAP coding

Event trigger via status management: Pure configuration,

no ABAP coding

Event trigger via message control: Pure configuration, no

ABAP coding

Event trigger via ABAP code in a user exit, business add-in

(BAdI), or other ABAP programs

5.1.1 Event Trigger via Change Documents

Most standard SAP applications (master data or transaction

data) use the concept of change documents to track the

creation, updates, and deletion of the entire object or some

attributes within the object. Change document objects can

be viewed with Transaction SCDO. Figure 5.1 shows an

example of the change document object VERKBELEG, which is

used to track changes in sales document transactions.

The change document object lists the underlying tables that

are tracked for create/change/delete actions on the

corresponding application transactions or programmatically

via Business Application Programming Interfaces (BAPIs).

The first step to configure an event trigger via change

documents is to identify the correct change document

object and the corresponding table (if you’re interested in

specific field updates).

Next, you go to Transaction SWED to verify whether the

relevant change document object tracks the change action

that is relevant for your requirement. For example, for

change document object VERKBELEG, you can see in Figure 5.2

that all three actions—create, change, and delete—are

tracked.

Figure 5.1 A Change Document Object in SAP

Figure 5.2 Viewing the Change Actions Maintained against a Change

Document Object in Transaction SWED

Note

This is just a verification step as most common standard

SAP change document objects will track all the actions.

However, if you’ve created your own custom application

with a custom change document object, then this step

becomes a prerequisite before you can proceed to the

next step to configure your workflow events against the

change document object.

Expert Tip

In Transaction SWED, there is an option to configure a

function module against a change document object. This

function module is required when the key field of the

primary table in the change document object differs from

the key field of the business object used to trigger the

event in Transaction SWEC. For example, for the change

document object PROJ, primary table PROJ has a key field of

PSPNR (internal project number). However, the business

object for project BUS2001 has two key fields, external

project number (PSPID) and internal project number (PSPNR).

So, a conversion needs to happen from the change

document key to the business object key via the

Transaction SWED function module. Refer to function

module CJPN_BUS_2001_2054_OBJECT_KEY for an example of the

coding involved.

The next step is to configure your workflow event for the

change document object and also configure the specific

change action in Transaction SWEC. Once you click on the

New Entries button, enter the change document object

(which you selected from Transaction SCDO) and the

business object type and event which you want to trigger.

Select the On Create, On Change, or On Delete radio

button per your requirement. Save your entries.

You can also maintain field restrictions to track changes in

specific fields of the tables listed under the change

document object. This additional field restriction is relevant

for change actions only. Here you simply need to select the

field you want to track and enter a change condition

(optional) using the old value and new value variables of

this field. Figure 5.3 shows the change document

configuration of a sample business object/event against the

object VERKBELEG.

Figure 5.3 Configuring BOR/Class Events against a Change Document Object

in Transaction SWEC

Once you’ve linked your business object (or ABAP class) and

event to the change document object/action, then your

event triggering configuration is complete. Now you may

proceed to test your application by

creating/updating/deleting an object and checking if the

event was triggered from the event trace (Transaction

SWEL).

Let’s now look at an example in which an event is triggered

when a credit memo request is blocked for billing in SAP.

We’ve identified the standard business object for the credit

memo request application as BUS2094 and verified that no

standard event is available that is triggered under the same

conditions. Here, we’ve created a subtype of BOR BUS2094,

delegated the supertype to the subtype, and defined our

custom event ZWEBillingBlockCreated in the subtype (refer to

Chapter 3 for details on subtype creation and delegation).

Figure 5.4 shows the view of the subtype after the addition

of the custom event.

Figure 5.4 Subtype with Custom Event Added from Transaction SWO1

Now follow these steps to proceed with the event

configuration:

1. Identify the table and field name for which the new

custom event should be raised, and identify the specific

value that needs to be checked (if relevant). In this case,

the field for the billing block on credit memo request

transaction is VBAK-FAKSK.

2. Identify the change document object, which includes

table VBAK from Transaction SCDO. In this example, the

object name is VERKBELEG.

3. Proceed to Transaction SWEC to enter the configuration

steps as mentioned in the following steps. (Note:

Because you’re dealing with a standard transaction and

a standard change document object, you don’t need to

configure the change actions registered in Transaction

SWED.)

4. Under the Events for Change Document node, click

on the New Entries button, and enter the details as

shown in Figure 5.5: enter Change Doc. Object

(change document object) as “VERKBELEG”, choose BO

BOR Object Type from the Object Category

dropdown, enter Object Type as “BUS2094”, and enter

Event as “ZWEBILLINGBLOCKCREATED”.

5. Choose the On Change radio button under Trigger

Event.

Figure 5.5 Custom Event Configured for the Change Document Object

in Transaction SWEC

6. Navigate to the Field Restrictions child node, and

enter the field change details for triggering the event.

Here you have two options to enter the field restriction:

If your condition is a simple comparison of one or

more values, then enter it directly as shown in

Figure 5.6 with the Table name, Field Name, Old

Value, and New Value fields.

Figure 5.6 Maintaining Field Restrictions for the Event Trigger via

Change Documents in Transaction SWEC

If your condition involves a more complex expression,

then use the Condition Editor button to navigate to

the screen shown in Figure 5.7, and enter the

condition as required. You can make use of a wide

range of expression operators, such as >, >=, <, <=,

EX, NX, CE, NE, and so on, along with logical

operators, such as And, Or, and Not, to frame your

condition. You can also use parentheses in your

expression as appropriate and use multiple table fields

together in a single expression.

7. Go back and save your changes. You will be prompted

for a transport request.

Figure 5.7 Maintaining Field Restrictions with the Condition Editor in

Transaction SWEC

Next, it’s time to test your changes. As shown in Figure 5.8,

create/change a credit memo request in SAP S/4HANA from

Transaction VA01/VA02, and enter the Billing Block as “08”

before saving the document. Write down the document

number.

Figure 5.8 Changing a Credit Memo Request in SAP S/4HANA with the Billing

Block Set

Now, check the event trace from Transaction SWEL (make

sure the event trace is switched ON via Transaction SWELS

first), as shown in Figure 5.9. Enter your business object

type (“BUS2094”) in the ’Creator’ object type field to

filter out the trace entries, and make sure the date and time

are selected appropriately in the Created From Date/Time

field.

Figure 5.9 Checking the Event Trace from Transaction SWEL

Then execute and check the trace as shown in Figure 5.10. If

the entry exists with your business object type and event,

the object key matches the document number that you

saved (in this case, the credit memo request in Transaction

VA01/VA02) on the details screen (see Figure 5.11), then

your test result is successful.

Event trace reveals that your custom event has been

successfully triggered (see Figure 5.10), and the credit

memo request number in the object key (see Figure 5.11)

matches the document you’ve posted.

Figure 5.10 Event Trace Showing Event Has Triggered

On clicking the Details button (or double-clicking on the

event trace line), you can see the instance information

shown in Figure 5.11 with object type, object key, event,

and event creator.

Figure 5.11 Event Trace Details Showing Event Creator Data

Note

The Receiver Data section is empty here as we haven’t

yet configured any receiver (workflow template or single-

step task) for this event. This section will be dealt with in

detail in Section 5.2 when we talk about receivers and

event linkage.

5.1.2 Event Trigger via Status Management

Sometimes, you may want to trigger your workflow event

via status management. Status management with respect to

a workflow includes both system statuses and user statuses.

System statuses are specific standard processing statuses

of a document. For example, when you release a production

order in SAP, the system status I0002 is set for that order. On

the other hand, user statuses are usually customer defined

and are included under a status profile, which is either

assigned to the order type (header level) or to an item

category (item level). Detailed configuration steps required

to create a status profile and assignment to an SAP

transaction is beyond the scope of this book. However, note

the following points when dealing with status management

related to workflow events:

Both system statuses (IXXXX) and user statuses (EXXXX)

may be used to trigger workflow events.

An event may be triggered when a specific system/user

status becomes active or when an Active status is set to

Inactive.

System or user status entries for a particular document

are logged in table JEST. The key field of this table is

object number (OBJNR), which can be retrieved from the

application table for which the status is logged, for

example, table AUFK for production order header, table VBAK

for sales order header, table VBAP for sales order item, and

so on. Other important tables related to status include

table JSTO (status object information) and table JCDS

(change documents for status).

Status profile may be maintained from Transaction BS02.

Workflow events may be configured for system statuses in

Transaction BSVX. Figure 5.12 shows an example. These

entries are usually provided by standard SAP. Here, you

maintain the business object type and the event name.

Under the Status restrictions node (see Figure 5.13),

you can maintain one or more system statuses for which

the event will be triggered.

Figure 5.12 Event Configuration with System Status in Transaction BSVX

Figure 5.13 System Status Restrictions for Event Configuration

Workflow events may be configured for system/user

statuses in Transaction BSVZ (see Figure 5.14 for an

example). These entries are always maintained by the

customer and not provided by SAP. Here, we’ve

configured the event ZWECHANGED of business object

BUS2007 and a custom status profile for status object

type ORI (maintenance order).

Figure 5.14 Event Configuration with User Status Profile in Transaction

BSVZ

Under Status restrictions, shown in Figure 5.15, we’ve

maintained the user status QTCR (E0003) with the Inact.

(inactive) checkbox unselected. This means that the event

ZWECHANGED of business object type BUS2007 will be triggered

when the user status QTCR is set for a particular service

order at the header level.

Figure 5.15 User Status Restrictions for Event Configuration

5.1.3 Event Trigger via Message Control

This is one of the less commonly used techniques for

triggering events via configuration. In this technique, you

use an output type based on traditional table NAST to trigger

the event. Steps to configure the output type in Transaction

NACE are very much like print, email or Application Link

Enabling (ALE) outputs. The only difference is the

transmission medium, which in this case, should be 9

Events (SAP Business Workflow). Detailed configuration

steps for output type configuration in Transaction NACE is

beyond the scope of this book, but Figure 5.16 lists the

important steps involved in this configuration.

Figure 5.16 Steps for Event Configuration via Table NAST Message Control

Configuration

Following are some important points about the restrictions

applicable for this event triggering technique:

This technique only applies to those standard applications

that can use output types based on table NAST. With the

introduction of new Business Rules Framework plus

(BRFplus) output types in SAP S/4HANA, the list of

standard applications may be further reduced because

the output determination technique doesn’t support

workflow channels in SAP S/4HANA yet.

Message control can only raise business object type

events. Class-based events aren’t supported with this

technique.

The business object type and event name are maintained

in condition records, so business users have the flexibility

of activating and deactivating the event trigger separately

in each system. They also have the flexibility to raise

different events according to different condition criteria.

Let’s now look at an example of triggering a custom event in

an inbound delivery transaction via message control. For

this example, you’ll trigger an event called quality

inspection request after posting the goods receipt against

an inbound delivery. This event may further be used to

trigger a workflow that would manage the quality inspection

approval of the goods received from a vendor. The standard

business object for inbound delivery transaction has been

identified as BUS2015. We’ve created subtype ZBUS2015 of the

standard BOR type, delegated supertype BUS2015 to the

subtype, and defined custom event ZWEQualityInspection in

the subtype. (Refer to Chapter 3 for details on subtype

creation and delegation.) Figure 5.17 shows the view of

subtype ZBUS2015 after adding the custom event from

Transaction SWO1.

Figure 5.17 BOR Subtype Definition with Custom Events

Next, you’ll see the steps to configure your custom output

type with transmission medium 9 Events (SAP Business

Workflow) and use it for triggering your quality inspection

event after goods receipt posting for the inbound delivery.

Note that although Transaction NACE output type

configuration details aren’t in the scope of this book, we’ve

listed some high-level steps, mostly related to workflow

event configuration for the sake of understanding the

concepts, as follows:

1. Define your custom output type in the Application E1

(inbound delivery) in Transaction NACE. Once you select

the application, click on the New Entries button, and

enter the output type name and short description.

Figure 5.18 shows the custom output type definition in

Transaction NACE.

2. Click on Processing routines in the Dialog Structure,

and then maintain Transmission medium as 9 Events

(SAP Business Workflow). Maintain the Program as

“RVNSWE01” and Form Routine as “CREATE_EVENT”,

as shown in Figure 5.19.

3. Maintain the access sequence for the output type in

Transaction NACE in the Access Sequences screen per

your business requirement. In this case, we’ve assigned

an access sequence based on shipping point/delivery

type. This step depends on your business requirement.

You can use a standard access sequence if it meets your

requirement or create a custom one according to your

needs. We won’t go into details about access sequence

and access creation here as this is an elaborate topic by

itself and not related to workflows.

Figure 5.18 Custom Output Type Definition in Application E1 in

Transaction NACE

Figure 5.19 Maintenance of Processing Routine for Transmission

Medium 9 in Transaction NACE

4. Assign the output type to an output determination

procedure by clicking on the Procedures button in

Transaction NACE and then adding the output type

under a suitable procedure (see Figure 5.20) Make sure

this procedure is assigned to the relevant delivery

type(s) in Transaction SPRO Customizing under

Logistics Execution • Shipping • Deliveries •

Define Delivery Types. Select your delivery type, and

click the Details button. Then, enter the procedure

name in the OutputDet.Proc. field. In Figure 5.20,

we’ve also maintained a requirement routine in the

output procedure against our custom output type to

restrict the output trigger after post goods receipt only.

Figure 5.20 Addition of Custom Output Type to the Output Procedure

along with Requirement Routine

5. Maintain the condition record for the output type in your

test client, as shown in Figure 5.21. You can navigate to

this screen by clicking on the condition records button in

Transaction NACE; then choose your output type and

enter the appropriate criteria per your access sequence

definition. In the condition record, you must enter the

transmission medium as “9”.

Figure 5.21 Condition Record Maintenance for Custom Output Type

6. Maintain the object type and event under the

Communication tab, as shown in Figure 5.22. To

navigate here, click on the Communication button on

the application toolbar of the condition record screen

shown previously in Figure 5.21.

Figure 5.22 Enter the Communication Data for the Condition Record with

BOR Type and Event

Now it’s time to test your changes. Create an inbound

delivery based on a purchase order item in your test

system. Perform post goods receipt for the delivery (via

inventory management or embedded extended warehouse

management (EWM), depending on your storage location

settings). After post goods receipt, the output type ZQAW will

be automatically triggered, which will fire our custom BOR

event. Figure 5.23 shows the custom output type ZQAW

triggered from inbound delivery after post goods receipt.

The transmission medium shows 9 Events (SAP Business

Workflow), as required by our scenario.

Figure 5.23 Workflow Event Output Generated after Post Goods Receipt of

Inbound Delivery

You can check the event trace (Transaction SWEL) for

tracking the event (same steps as detailed in the test

scenario for the event trigger with change documents). In

this case, you filter the trace with your object type BUS2015.

Figure 5.24 shows the event trace with our custom event

ZWEQUALITYINSPECTION triggered for object type

BUS2015.

Figure 5.24 Event Trace Showing Event Triggered for the Output Type

On clicking the Details button (or double-clicking on the

event trace line), you can see the instance information, as

shown in Figure 5.25, with Object Type, Object Key,

Event name, and Event Creator details. The Object Key

number is the key field of the business object type BUS2015,

that is, the inbound delivery number.

Figure 5.25 Event Trace Details Showing Event Creator Instance Information

Note

The Receiver Data section of the screen is empty here

because we haven’t yet configured any receiver (workflow

template or single-step task) for this event. This section

will be discussed in more detail in Section 5.2 when we

talk about receivers and event linkage.

5.1.4 Event Trigger via ABAP Code in User

Exits, Business Add-Ins, and Custom Programs

Finally, you always have the option to trigger a workflow

event via ABAP code. For this, you need a BAdI, user exit,

function exit, or some other form of enhancement in a

standard SAP application program. If you’ve developed your

own custom program, then you can call the workflow event

API from any appropriate point in that program (preferably a

save or update module). An explicit COMMIT WORK is required to

register the event in the system, which may be part of your

custom program, or for an enhancement, it should be part

of the standard Transaction LUW processing.

Some of the common function modules or APIs that can be

used to raise a workflow event are as follows:

Function module SWE_EVENT_CREATE (used for BOR events)

Workflow API SAP_WAPI_CREATE_EVENT (used for BOR events)

Update function module SWE_EVENT_CREATE_IN_UPD_TASK (used

for BOR events)

Method RAISE of class CL_SWF_EVT_EVENT (used for both BOR

events and ABAP class events)

Workflow API SAP_WAPI_CREATE_EVENT_EXTENDED (used for both

BOR events and ABAP class events).

All these APIs perform the same thing in the SAP system,

that is, raise a workflow event with required instance data

and additional parameters. The event API interface

parameters are as follows:

Object type

This is the name of the BOR type, for example, BUS2032.

Object key

This is the concatenated key of the business object

instance. For example, for BUS2032, it’s the sales order

number, whereas for BUS2009, it’s the purchase requisition

number and the item number.

Event

This is the name of the BOR event that you want to

trigger. This event must be defined as part of a BOR

definition.

User

The user ID should create the event (available as

_EVT_CREATOR in the event container). By default, this is the

system user calling the workflow API.

Event container

This container may be used to pass any event

parameters. For example, if you have sales orders being

created via multiple interfaces and directly within SAP as

well, then you may want to add a parameter to identify

the system or the application that triggered the sales

order. This will be an event parameter and can be passed

via the event container table parameter of the workflow

API.

Event ID and return code

The output of the workflow API is the event ID number

(internal) and a return code indicating success or error. In

case of error, additional parameter(s) for messages

provide the details.

For class-based events, the method parameter requires the

business class name and event in place of the BOR type

name and event. The rest of the parameters are like the

event function module.

Now let’s look at a couple of source code examples to learn

how to trigger workflow events via APIs. In Listing 5.1, we’ll

raise event ZWEQualityInspComplete for BOR type BUS2015, which

will be triggered at the end of the quality inspection review

process discussed in our case study in Section 5.1.3. Event

ZWEQualityInspComplete has event parameter ZWCDecisionCode,

which will pass either APPROVED or REJECTED values through the

event. In Listing 5.2, we’ll raise an event for a custom

workflow business class to release a sales and distribution

invoice to accounting.

Note

For both of these examples, the enhancement or the

custom program from where the event should be

triggered depends on your application design and

business requirements.

In Listing 5.1, we’ll raise an event for the business object

type, along with an additional event parameter. The inbound

delivery number, which is the key field of object type

BUS2015, is passed as an input to the program as P_INBDEL,

along with the decision code that is passed via parameter

P_ACTION. Workflow API SAP_WAPI_CREATE_EVENT triggers event

ZWEQualityInspComplete for the entered delivery number and

maps the action code to the event container.

INCLUDE: <cntn01>. " Include for Container Macros

***Selection screen

PARAMETERS: p_inbdel TYPE likp-vbeln OBLIGATORY, " Delivery

 p_action TYPE char10 OBLIGATORY. "Approved or Rejected

***Data declarations

DATA: v_object_key TYPE swo_typeid, " Object key

 v_subrc TYPE sysubrc, " Return Code

 s_evt_cont TYPE swr_cont, " Container (name-value pairs)

 t_evt_container TYPE swrtcont.

***Constant declarations

CONSTANTS: c_object_type TYPE swo_objtyp VALUE 'BUS2015', " Type

 c_event TYPE swo_event VALUE 'ZWEQualityInspComplete', " Event ,

 c_evt_param TYPE swc_elem VALUE 'ZWCDecisionCode'. " Element

*Fill object key for event

DATA(v_delivery) = CONV vbeln_vl(|{ p_inbdel ALPHA = IN }|).

v_object_key = v_delivery.

*Fill event container with decision code

s_evt_cont-element = c_evt_param.

s_evt_cont-value = p_action.

APPEND s_evt_cont TO t_evt_container.

CLEAR s_evt_cont.

CALL FUNCTION 'SAP_WAPI_CREATE_EVENT'

 EXPORTING

 object_type = c_object_type "BUS2015

 object_key = v_object_key

 event = c_event

 commit_work = abap_true

 event_language = sy-langu

 language = sy-langu

 user = sy-uname

 IMPORTING

 return_code = v_subrc

 TABLES

 input_container = t_evt_container.

Listing 5.1 Example Source Code to Trigger a BOR Event with Parameters via

the Workflow API

In Listing 5.2, we’ll raise an event for an ABAP class, along

with an additional event parameter. The billing document

number, which is the key attribute for ABAP class

ZCLOTC_INV_RELEASE_ACCOUNTING is passed as input to the

program. The additional event parameter for auto release is

set to true (X). The method RAISE of class CL_SWF_EVT_EVENT

raises the event APPROVE_INV_WORKFLOW for the entered billing

document number and maps the parameter for auto release

to the event container.

PARAMETERS: p_vbeln TYPE vbrk-vbeln. "SD Billing document number

***Data declarations

DATA : lr_event_parameters TYPE REF TO if_swf_ifs_parameter_container, " Container

for Transfer of Parameters

 lr_catch TYPE REF TO cx_root, " Abstract Superclass for All

Global Exceptions

 lv_msg TYPE string,

 lv_objkey TYPE char32, " Objkey of type CHAR32

 lv_id TYPE char01, " Id of type CHAR01

 lv_param_name TYPE swfdname. " Element ID (32 Characters,

Unique, Not Language-Dependent)

***Constant declarations

CONSTANTS : lc_objtype TYPE sibftypeid

 VALUE 'ZCLOTC_INV_RELEASE_ACCOUNTING', " Type

 lc_event TYPE sibfevent

 VALUE 'APPROVE_INV_WORKFLOW', " Event

 lc_catid TYPE sibfcatid

 VALUE 'CL'. " Category of Objects in Persistent Object References

cl_swf_evt_event=>get_event_container(

 EXPORTING

 im_objcateg = cl_swf_evt_event=>mc_objcateg_cl

 im_objtype = lc_objtype

 im_event = lc_event

 RECEIVING

 re_reference = lr_event_parameters).

* set up the name/value pair to be added to the container

lv_param_name = 'AUTO_RELEASE'. "parameter name of the event

lv_id = abap_true.

* Add the name/value pair to the event conainer

TRY.

 lr_event_parameters->set(

 EXPORTING

 name = lv_param_name

 value = lv_id).

 CATCH cx_swf_cnt_cont_access_denied INTO lr_catch.

 lv_msg = lr_catch->get_text().

 CATCH cx_swf_cnt_elem_access_denied INTO lr_catch.

 lv_msg = lr_catch->get_text().

 CATCH cx_swf_cnt_elem_not_found INTO lr_catch.

 lv_msg = lr_catch->get_text().

 CATCH cx_swf_cnt_elem_type_conflict INTO lr_catch.

 lv_msg = lr_catch->get_text().

 CATCH cx_swf_cnt_unit_type_conflict INTO lr_catch.

 lv_msg = lr_catch->get_text().

 CATCH cx_swf_cnt_elem_def_invalid INTO lr_catch.

 lv_msg = lr_catch->get_text().

 CATCH cx_swf_cnt_container INTO lr_catch.

 lv_msg = lr_catch->get_text().

ENDTRY.

DATA(lv_vbeln) = CONV vbeln_vf(|{ p_vbeln ALPHA = IN }|).

* assigning the billing no to object key

lv_objkey = lv_vbeln.

* Raise event to trigger the workflow

TRY.

 cl_swf_evt_event=>raise(

 EXPORTING

 im_objcateg = cl_swf_evt_event=>mc_objcateg_cl

 im_objtype = lc_objtype

 im_event = lc_event

 im_objkey = lv_objkey

 im_event_container = lr_event_parameters).

 CATCH cx_swf_evt_invalid_objtype INTO lr_catch.

 lv_msg = lr_catch->get_text().

 CATCH cx_swf_evt_invalid_event INTO lr_catch.

 lv_msg = lr_catch->get_text().

ENDTRY.

Listing 5.2 Example Source Code to Trigger a Class-Based Event with

Parameters via a Method Call

5.2 Event Creators, Receivers, and

Event Linkage

An event creator is the object that raises an event. In the

previous section, we discussed the various options for

raising an event from an application. Technically, the event

creator is the user who raised the event, with any of the

previously mentioned event publishing mechanisms. The

name of the event creator is visible in the event trace

(Transaction SWEL), and normally when the event is used to

trigger a workflow, the event creator is bound to the

workflow container element _Wf_Initiator (workflow

initiator). Figure 5.26 shows the event creator details in the

event trace Transaction SWEL.

Figure 5.26 Event Trace Showing Event Creator Information

An event receiver is the object that receives the event and

performs subsequent processing. Technically, the event

receiver could be a workflow template (multistep task), a

single-step task, a function module, or a handler class

method. In the event trace Transaction SWEL, you can see

the event receiver details (if any) under the receiver data. In

Figure 5.27, you can see the event receiver details in the

event trace in Transaction SWEL. Here, the receiver is a

workflow template (multistep task) and the receiver Object

Key shows the work item ID of the workflow triggered from

the event.

Figure 5.27 Event Trace Showing Event Receiver Information

Event linkage is the link between an event creator

(semantically, the BOR object type/class and event) and a

receiver (workflow template/task/function module/method

call). Event linkages can be created in Transaction SWE2 or

Transaction SWETYPV. This linkage is also implicitly created

when you enter a triggering event on a workflow template

or single-step task from Transaction PFTC. Figure 5.28 shows

a sample event linkage entry from Transaction SWE2 with

various details. We’ll look at the components on the screen

to understand the significance of that entry in the event

linkage.

Figure 5.28 Event Linkage from Transaction SWE2 or Transaction SWETYPV

The following details are visible in an event linkage entry

under the Linkage Setting (Event Receiver) section of

the screen, as shown in Figure 5.28:

Receiver Call

This dropdown field lets you choose between a function

module or method call as the event handler and acts as a

trigger for the receiver type. If you choose Function

Module in this option, then you must enter a receiver

function module in the Receiver Function Module field

that appears. This function module must use the interface

mentioned in the Receiver Function Module bullet

point later in this list. For single-step or multistep tasks as

receiver, the function module is the default receiver call,

and SWW_WI_CREATE_VIA_EVENT_IBF is the default function

module.

If you choose a Method call in this field, then you must

enter a class that implements interface

BI_EVENT_HANDLER_STATIC. The Method Name field is

defaulted as ON_EVENT, which must implement the logic

to handle the event. Figure 5.29 shows an example of an

event linkage with a method call as the receiver call.

Figure 5.29 Sample Event Linkage Showing the Receiver Method Call

Receiver Type

For a multistep task or single-step task, you’ll see the

workflow or task ID in this field starting with a prefix of

WS or TS, respectively. This is the workflow template or

the task that has been triggered by the event. The event

must be maintained in the Triggering Events tab of the

workflow template or task, and the event linkage must be

active (green). If the receiver is a function module or a

class method, then this field acts as a dummy entity. No

object exists in the system with this ID.

Object Type/Object Key

These fields appear in the event trace in the Receiver

Data area of the screen (refer to Figure 5.28). If the

receiver type is a workflow or task, then Object Type is

WORKITEM, which is the runtime object type for a

workflow or task. The Object Key then represents the

work item ID of the triggered workflow instance (or single-

step task). If the receiver is a function module or class

method, the Object Type and Object Key fields are both

empty.

Receiver Function Module

This field appears when you choose Function Module

from the Receiver Call type dropdown. When the

receiver type is a workflow or a single-step task, this

function module is defaulted as

SWW_WI_CREATE_VIA_EVENT_IBF. If you choose some

other receiver type, then you can choose your own

function module or class method based on the Receiver

Call dropdown. You can choose the receiver as function

module or method when you simply want to update some

transaction data via a BAPI or other API once the event is

raised from an application. For example, you may want to

create an outbound delivery automatically when a sales

order is saved. The receiver function module must

implement the same interface as template function

module SWE_TEMPLATE_REC_FB (BOR-based objects only) or

template function module SWE_TEMPLATE_REC_FB_2 (both BOR-

and class-based objects).

Check Function Module

A check function module is a source code triggered

synchronously by the event creator if an active event

linkage is found and before triggering the event receiver.

The check function module may be used to determine if

the event receiver should be triggered or not based on

the event instance data. For example, you’ve developed a

workflow for approval of purchase orders, but you only

want to trigger the workflow for specific purchase order

types. The check function module may be attached to the

event linkage to check the purchase order type (EKKO-

BSART) before you decide whether to trigger the workflow

(receiver) for a given purchase order. The check function

module must implement the same interface as template

function module SWE_TEMPLATE_CHECK_FB (BOR-based objects

only) or template function module SWE_TEMPLATE_CHECK_FB_2

(both BOR- and class-based objects).

Receiver Type Function Module

This is used when you have multiple receivers linked to

the same event (event linkages), and you only want to

trigger one receiver at runtime based on the object

instance data. For example, you’ve developed three

different workflow templates for the approval of three

types of purchase orders, such as, direct purchases,

indirect purchases, and stock transfer orders. All three

workflows have the same triggering event. Now when the

purchase order Created event is raised, you need to check

the purchase order document type and decide which

workflow to trigger. This requirement may be achieved via

receiver type function module. The output of the function

module is the receiver type (workflow or single-step task

or function module/method). The receiver type function

module must implement the same interface as template

function module SWE_TEMPLATE_RECTYPE_FB (BOR-based

objects only) or template function module

SWE_TEMPLATE_RECTYPE_FB_2 (both BOR- and class-based

objects).

Destination of Receiver

In this field, you can enter the logical Remote Function

Call (RFC) destination of the receiver, if the receiver is in a

different system from the event creator.

Event delivery

Event delivery from creator to receiver can happen via

transactional RFC (tRFC; default) or via queued RFC

(qRFC). This setting goes together with the Enable Event

Queue checkbox in the same screen. We’ll study more

about event delivery and event queue administration in

Chapter 8, Section 8.7.

Linkage Activated

This indicates that the event linkage is active. Receiver

determination and triggering only happens when the

event linkage is active. This flag can also be updated from

Transaction PFTC when you activate the triggering event

on a workflow template or a task.

Behavior Upon Error Feedback

This setting determines how the system should react if an

error occurs while delivering an event to the receiver.

Default setting is 0 System defaults, which means that

the global setting from event administration (Transaction

SWEAD) is used. Other options for this field include the

following:

1 Deactivation of Linkage: If an error occurs, then

the event linkage will be automatically deactivated.

2 Mark linkage as having errors: If an error occurs,

then the event linkage is marked as Errors. This setting

influences the next field on the event linkage, that is,

Receiver Status.

3 Do not change linkage: There is no impact on the

event linkage with this setting even if an error occurs.

Normally, you’ll maintain the setting 0 System defaults

in each individual event linkage and control the error

feedback behavior via the global setting in Transaction

SWEAD. More details on event administration will be

covered in Chapter 8.

Receiver Status

Based on the error feedback setting in the previous field

(or global setting), the Receiver Status field may show

as 0 No errors or 1 Errors after an error occurs while

trying to trigger an event receiver.

5.3 Start Conditions in Workflows

In the previous section, you learned about check function

modules in event linkage, which can be used to evaluate

any condition before deciding to trigger the receiver for a

particular object instance. For example, you might want to

trigger a workflow for the release of purchase orders, but

you want to restrict the approval for specific purchase order

types only. This condition may be evaluated in a check

function module. If you raise the exception NO_RECTYPE in this

check function module, then the workflow is not triggered

by the event.

An alternative and more recommended option compared to

the check function module is Start Conditions in workflows.

This is more of a configuration approach, provided that the

fields or the variables you want to use for the condition are

already available as an attribute in the BOR type or the

ABAP class, which defines the event. If not, then you first

need to create a custom attribute in the business object or

ABAP class that can be used for configuring the start

condition in Transaction SWB_COND (or via the Start

Events tab under the header details of a workflow definition

in Transaction SWDD). The event linkage should exist before

you can create a start condition for the same. The start

condition itself is a Customizing object and can be

transported to other systems or clients in a Customizing

transport request.

In Section 5.1.3, we looked at an example of how to trigger

custom event ZWEQualityInspection from the BOR type BUS2015

(delegated to subtype ZBUS2015). Now, let’s suppose that

we’ve created an event linkage of this event with a custom

workflow, but we only want to trigger the workflow for

certain delivery types. There are many ways to apply this

condition filter, but, in this example, we’ll explore the

approach of start conditions using Transaction SWB_COND:

1. Ensure that an event linkage exists in Transaction SWE2

or Transaction SWETYPV for the concerned event and

workflow/task because that is a prerequisite to creating

a start condition. Figure 5.30 shows an event linkage

entry from Transaction SWE2 without a start condition.

Note that the Check Function Module field is empty in

this case.

2. Ensure that the field(s) to be used in the start condition

exist as attribute(s) in the BOR type of the event. In this

example, you need the Delivery type as an attribute in

business object type BUS2015. Because this attribute

doesn’t exist in the standard, you must create a custom

attribute in the delegated subtype ZBUS2015, as shown in

Figure 5.31. (Refer to Chapter 3, Section 3.1.2, for

details on how to create a database attribute in a

business object type.) We’ve created custom database

attribute ZWADeliveryType for this purpose.

Figure 5.30 Event Linkage before Assigning a Start Condition

Figure 5.31 Creation of a Custom Attribute in the BOR Subtype

Definition

3. Now you can create the start condition using Delivery

type attribute for the event linkage in Transaction

SWB_COND. Figure 5.32 shows a view of the event

linkage entry in Transaction SWB_COND before creating

a start condition for the same. (You can search for the

event linkage based on the business object type/ABAP

class, event name, receiver workflow, or task ID.)

Figure 5.32 Creation of Start Condition for Event Linkage from

Transaction SWB_COND

4. Click on the Create button on the toolbar, and then click

on the selected event linkage. A popup screen will

appear with the condition editor that allows you to

create flexible start conditions. In the screen shown in

Figure 5.33, enter the start condition per your

requirement. (In this case, we’re checking for delivery

type = EL).

Figure 5.33 Maintaining the Start Condition Using the Condition Editor

in Transaction SWB_COND

5. Confirm the condition popup screen once editing is

complete.

6. In Figure 5.34, activate the condition by clicking on the

red-light icon until it turns green. Save the condition and

capture it in a Customizing transport for moving to other

systems/clients.

Figure 5.34 Activate the Start Condition (Indicated by the Green Icon to

the Left)

Now it’s time to test the start condition. When you trigger

event ZWEQualityInspection for a delivery with type EL, the

start condition will evaluate to True, which may be viewed

from the event trace in Transaction SWEL. Figure 5.35 shows

the event trace with a successful receiver trigger after the

start condition evaluation.

Figure 5.35 Event Trace Showing Event Triggered after Evaluation of Start

Condition

Now if you trigger the event for a delivery with any other

type, for example, DIG, then the start condition will evaluate

to False, and the receiver workflow won’t be triggered from

the event trace, as shown in Figure 5.36.

Figure 5.36 Event Trace Showing Exception Raised due to Start Condition

Being Evaluated to False

5.4 Terminating Events and

Instance Linkage

Up to this point, we’ve discussed triggering events and their

linkage to workflows (multistep tasks) or single-step tasks.

These events are maintained in the Triggering events tab

of a workflow or single-step task. Tasks can also have

terminating events that are used to signal the end of

processing for a dialog work item. Usually, terminating

events are attached to asynchronous dialog tasks. This

means that the underlying BOR method is declared as

asynchronous (Synchronous object method checkbox is

unchecked in the method definition in Transaction SWO1).

For ABAP classes, however, this synchronous/asynchronous

attribute doesn’t exist at the method level. It’s flagged at

the task level only from Transaction PFTC.

In Figure 5.37, the task for releasing a purchase order is

marked as asynchronous.

On the Terminating events tab, events RELEASED,

RESET, and SIGNIFICANTLYCHANGED are maintained as

terminating events for this task, as shown in Figure 5.38.

Terminating events are entered by selecting the object type

container element, from where the BOR object type or the

ABAP class name is derived. Then, you must select the

event name from the BOR object type or ABAP class.

Binding can be maintained between the event container and

task container, similar to triggering events.

Figure 5.37 Example of an Asynchronous Standard Task

Figure 5.38 Terminating Events in an Asynchronous Dialog Task

Whenever the system triggers any one of the preceding

events for a purchase order; any Ready or In Process work

items for task TS20000166 will be set to Completed status.

Terminating events may be raised using the same kind of

mechanisms as a triggering event, namely change

documents, status management, message control, or ABAP

code in enhancements. Binding may be done from event to

task container to receive the updated object instance into

the task/workflow.

Moving on to our next topic, instance linkages are

automatically created by the workflow runtime system,

whenever a work item is created for an asynchronous task

that has terminating events attached to it. Unlike event

linkage for triggering events, instance linkages aren’t

created manually. They may be viewed or updated manually

(as an administrator for exception situations) via Transaction

SWE3 or Transaction SWEINST. Each instance linkage

consists of a header record with the BOR/class, event, and

receiver type, along with the type-linkage active and event

queue active indicators. Under the header entry, you’ll see

the object details data, with the object key fields and the

receiver key (work item ID if task is the receiver type).

Figure 5.39 shows the view of instance linkages created

through workflow runtime data in Transaction SWE3 or

Transaction SWEINST.

Figure 5.39 Instance Linkages from Transaction SWE3 or Transaction

SWEINST

On selecting any row from the table and clicking on the

Object Data node, you can view the object instances (list

of documents) for which the instance linkage header entry

was created (see Figure 5.40).

Figure 5.40 Object Instances for an Instance Linkage from Transaction SWE3

or Transaction SWEINST

Instance linkages work automatically in the background

based on design-time definitions entered in the task.

Usually, no manual intervention is required. You can use the

instance linkage transaction for analysis to check which

objects are currently awaiting a terminating event. Once the

terminating event is raised for an object instance, the

corresponding entry is deleted from this table.

5.5 Check Function Module and

Receiver Function Module for Events

In Section 5.2, you learned the definition and purpose of

check function modules and receiver function modules,

which are maintained in the event linkage entry. Both

function modules may be entered automatically by the

system or manually by the developer.

When you configure a start condition for an event linkage

via Transaction SWB_COND (or directly via the Start Events

tab under the header details of a workflow definition in

Transaction SWDD), then default check function module

SWB_2_CHECK_FB_START_COND_EVAL is inserted in the event linkage

entry. If no start condition is maintained in Transaction

SWB_COND, then adding a check function module is a

manual task.

Similarly, when you maintain a workflow or a single-step

task as the receiver for an event, then default receiver

function module SWW_WI_CREATE_VIA_EVENT_IBF is automatically

added to the event linkage entry. For nonworkflow receivers,

you must manually enter a receiver function module or a

class and method name as the event handler object.

In Section 5.3, we used the start condition approach to add

a filter based on the delivery type on the quality inspection

approval workflow event linkage. In this case, we explored

an alternate approach using the check function module. The

advantage of this approach is that you don’t need the

condition field(s) to be created as attributes in the leading

BOR type or ABAP class. The disadvantage is that you need

to write some code for formulating the start condition. In a

real business scenario, you must carefully consider both

approaches and decide which one is the cleaner and more

efficient option for you. Listing 5.3 contains sample source

code of a custom check function module. Note the use of

exception NO_RECTYPE in determining the result of the check.

FUNCTION z_delivery_qinsp_wf_check.

*"--

""Local Interface:

*" IMPORTING

*" VALUE(OBJTYPE) LIKE SWETYPECOU-OBJTYPE

*" VALUE(OBJKEY) LIKE SWEINSTCOU-OBJKEY

*" VALUE(EVENT) LIKE SWETYPECOU-EVENT

*" VALUE(RECTYPE) LIKE SWETYPECOU-RECTYPE

*" TABLES

*" EVENT_CONTAINER STRUCTURE SWCONT

*" EXCEPTIONS

*" NO_RECTYPE

*"--

*--Local constant declarations

 CONSTANTS: lc_inb_delivery TYPE lfart VALUE 'EL'. " Delivery Type

 IF objtype = 'BUS2015' AND

 event = 'ZWEQUALITYINSPECTION'.

 DATA(lv_vbeln) = CONV vbeln_vl(objkey).

***Fetch delivery type from delivery header table

 SELECT SINGLE FROM likp " SD Document: Delivery Header Data

 FIELDS lfart

 WHERE vbeln = @lv_vbeln

 INTO @DATA(lv_lfart).

 IF sy-subrc = 0.

 IF lv_lfart <> lc_inb_delivery. "EL

 MESSAGE 'Invalid delivery type for Quality Inspection WF' TYPE 'E' RAISING

no_rectype.

 ENDIF. " IF lv_lfart <> lc_inb_delivery

 ENDIF. " IF sy-subrc = 0

 ENDIF. " IF objtype = 'BUS2015' AND

ENDFUNCTION.

Listing 5.3 Sample Code for a Check Function Module in Event Linkage

Receiver function modules (or method calls) for

nonworkflow receiver types may be used for a variety of

purposes in real business scenarios, for example, if you

want to trigger an interface after a sales order is saved. You

would ideally want to send the sales order number or the

updated data from the order in the interface, so you first

look for an exit or BAdI in the update task, or you may

decide to go for a custom receiver function module

configured in an event linkage. Because receivers are

triggered via an event that is raised after the standard save

of the transaction, you can query all database tables related

to the transaction in the receiver function module. It also

allows you the flexibility of configuration to activate or

deactivate the interface or maintain start conditions per

requirement. Another common scenario for using custom

receiver function modules is to create a follow-on document

from a transaction on save, for example, if you want to

create the delivery for a sales order automatically after

saving.

Receiver function modules must implement the same

interface as template function module SWE_TEMPLATE_REC_FB

(BOR-based objects only) or function module

SWE_TEMPLATE_REC_FB_2 (both BOR- and class-based objects).

For receiver method calls, you must create a custom class

using interface BI_EVENT_HANDLER_STATIC. Method ON_EVENT of

this interface must be implemented for the handler logic.

5.6 Summary

In this chapter, we started by explaining the concept of

events with respect to workflows. Then we discussed the

different event triggering techniques in detail, some

involving configuration and others involving ABAP code.

Then, we talked about event creators and event receivers,

followed by describing each element of an event linkage

entry. We also talked about event instance linkages. Finally,

we looked at some examples to understand the concept of

start conditions, check function modules, and receiver

function modules with respect to SAP Business Workflow.

6 Agent Determination

This chapter discusses different types of agents

involved in workflows. We look at the definitions of

each type of agent and go through some examples to

illustrate the concept of each type of agent and the

agent determination techniques commonly used in

classical workflow development. Finally, we look at how

to maintain a simple HR organizational structure for

workflow and use that for agent determination.

An agent is an executor of a dialog work item in a workflow.

Agents are the decision makers in the business scenario

involving your workflow. Obviously, you need to take care in

designing the agent determination rules for each dialog step

in your workflow. The design should be such that the agent

assignment process is robust, yet it remains flexible for

changes, and the rules are easy to maintain from a business

standpoint. This is the reason why we avoid assigning users

directly to a workflow step as an agent. Instead, we make

use of rules or HR organizational structure objects for agent

assignment at the workflow step or task level.

Another important aspect of agent determination is the

authorization or security role perspective. When designing

the agent determination for a particular step, you need to

make sure that the person who is supposed to execute the

work item has the necessary security role to do the job. This

means that your determined agents should be a subset of a

larger group of people who are authorized to do the same

job.

Finally, while determining the agents for a particular step,

you must keep in mind the people who should not be

allowed to execute a particular step of a workflow. The

people might have the relevant security roles or even be

part of the same group that is determined through the

agent determination rule. However, based on a specific

business case, they may not be allowed to execute a

particular workflow step. An example could be that of an

Employee Payables group that approves employee

expenses. If any member of the same group submits an

employee expense of their own, then they should not be

allowed to approve their own expense.

Remember that all agents involved in the workflow must

have an SAP user ID, even if they are accessing a work item

via an external inbox using Microsoft Outlook or some other

mail service. The user ID serves as the link and the

identification of the agent who executes a particular step of

a workflow. This is critical in terms of audit and workflow

monitoring.

Next, we’ll look at the different types of agents involved in a

typical workflow scenario. We’ll go through the details of

how each type of agent may be defined and how they are

assigned to your workflow with some examples. Then, we’ll

discuss the different techniques used to create agent

determination rules, followed by a discussion of possible

agents and default roles in a workflow. Finally, we’ll look at

how an organizational structure is defined in SAP S/4HANA

and how it can be linked to the agents involved in your

workflow.

6.1 Different Types of Agents in

Workflow

Agents within a workflow can be classified into a few

categories, which we’ll look at in the following sections.

6.1.1 Possible Agents and Responsible

Agents

The superset of all users who are allowed to execute a

particular work item are called the possible agents. Possible

agents are always assigned at the task level (dialog) and

never at the actual step level. Because possible agents

define the list of users who are actually authorized to

receive the work items for a particular task definition, it’s

logical to tie them with security roles that authorize the user

to perform the underlying function of the task. For example,

if a particular dialog task is supposed to release a purchase

order, then the possible agents for the tasks could be a

business role tied to all the people who have the access to

release the purchase order. It’s also possible to define a task

as a general task in the attributes, which means that any

SAP user is authorized to receive that task in the inbox and

execute it. This option should be used cautiously in a

nondevelopment environment as this means that the task

has no security around it. We’ll discuss possible agents in

more detail in Section 6.3.

Responsible agents, on the other hand, are the group of

people who are selected to execute a particular work item.

This group of people should be a subset of the possible

agents. If not, then the person(s) won’t be able to receive

that work item in their inbox. Let’s take the following

example to better understand the difference between

possible agents and responsible agents:

Possible agents

Group of purchasing managers who are authorized to

approve the release of a purchase order.

Responsible agents

For a particular purchase order, based on the purchase

organization, the purchasing group, and the amount on

the purchase order, the specific group of purchasing

managers who can approve it.

Responsible agents are usually assigned at the workflow

step level via an expression or an agent determination rule.

It’s also possible to assign responsible agents based on

organizational objects, such as an organizational unit,

position, or job. We’ll look at the various options available to

integrate organizational structure objects into your agent

assignment in Section 6.4.

You can also assign responsible agents at the task level via

a default rule option. This default rule gets executed if there

is no agent maintained at the workflow step level or if the

agent determination fails at the workflow step level. This

means that for multistep tasks, the default rule at the task

level has lower priority than the responsible agents

maintained at the workflow step level. However, for single-

step tasks, this is the only mechanism of maintaining

responsible agents. Default rule assignment at the task

level will be looked at in more detail in Section 6.3.

Figure 6.1 illustrates an example of a single-step standard

task using a default rule for agent determination. Here, you

can bind data from the task container to the rule container,

which can be used for agent determination. This process will

be covered in greater detail later in this chapter.

Figure 6.1 Agent Determination with a Default Rule

Figure 6.2 illustrates an example of a multistep task with an

agent determination rule defined at the step level. Here,

you can bind data from the workflow container to the rule

container, which can be used for the agent determination

logic.

Figure 6.3 illustrates an example of a multistep task with

agent determination using Expression at the step level.

Figure 6.2 Agent Determination with a Rule at the Workflow Step Level

Figure 6.3 Agent Determination with an Expression at the Workflow Step

Level

With the Expression option shown in Figure 6.3, you must

select a container element from your workflow that contains

the agent object (user, organizational unit, position, job,

role, etc.) in the formation of structure SWHACTOR. Here, the

first two characters (OTYPE) denotes the type of the agent

object, for example, “US” for user ID, “O” for organizational

unit, “S” for position, “C” for job, “P” for person. The next 12

characters represent the object ID associated with the type,

for example, user ID, organizational unit ID, position ID, job

ID or person number, and so on.

Selected agents or recipients are the people who receive

the work item in their inbox. So, they can be considered as a

runtime version of the responsible agents. Selected agents

are evaluated by considering the responsible agent

assigned at the workflow step level or default rule at the

task level, validating them with the possible agents

assigned at the task level and removing excluded agents, if

any.

Figure 6.4 illustrates the concept of selected agents for

different scenarios by considering possible agents,

responsible agents, and excluded agents.

Figure 6.4 Selected Agent Determination at the Workflow Step Level

6.1.2 Excluded Agents

These are the set of people to exclude from receiving the

work item for a particular workflow step. Let’s consider the

example of a workflow for the release of purchase

requisitions related to office supply products. The approval

of the purchase requisition is done by a group of purchasing

managers based on the purchase organization and the

purchasing group. Now if one of these purchasing managers

requests a purchase requisition of their own, then that same

person should not be able to approve his own request. This

could cause an audit violation or lead to uncontrolled or

even fraudulent purchases in the company. Therefore, in this

case, the purchase requisition requester should be set as an

excluded agent for the purchase requisition approval step.

Another example where excluded agents could be useful is

where you need more than one sequential approval and

don’t want the same person approving both steps

(assuming that the responsible agents of the two steps have

people in common). In this case, the actual agent of the first

approval step should be set as the excluded agent of the

next step(s).

Excluded agents are always set via expressions at the

workflow step level. You can assign any workflow container

element (multiline) with a base structure such as SWHACTOR as

the excluded agent for a workflow step.

Figure 6.5 illustrates an example where the workflow

initiator is assigned as an excluded agent at the workflow

step level. This effectively means that after the role

resolution is done for the rule at the workflow step level, the

initiator of the workflow is removed from that list of agents,

and the resultant list becomes the selected agent(s) of this

step.

Figure 6.5 Assigning Excluded Agents at the Workflow Step Level with an

Expression

6.1.3 Actual Agents

An actual agent is the person who executed a particular

work item and completed the workflow step. This agent’s

user ID is captured by the system container element

_Wi_Actual_Agent (Agent) of the dialog task once it’s

completed. Figure 6.6 shows a runtime view of the task

container for a completed dialog work item, with the actual

agent container element populated.

Figure 6.6 Actual Agent of a Completed Dialog Step Captured in System

Element _Wi_Actual_Agent (Agent)

6.1.4 Deadline Agents

Deadline agents are entered on the relevant deadline

monitoring tab (i.e., Latest End, Requested Start, Latest

Start, or Requested End tabs) of a dialog workflow step.

These deadline agents receive a work item in their inbox

when the respective deadline is reached. Deadline agents

may also be entered in the same way as responsible agents

of a dialog step, that is, as HR organizational objects,

security role, rule, user ID, or via an expression. Like

responsible agents, the most commonly used approach is

using rule or expression. Figure 6.7 illustrates an example of

a deadline agent being maintained under the Latest End

deadline tab using Expression.

Figure 6.7 Deadline Agent Assignment at the Workflow Step Level in a

Deadline Tab

It’s also possible to maintain deadline agents directly at the

task definition level using the Default Rules tab. Here, you

can assign an agent determination rule to any of the

deadline recipient rules. This option is mostly useful for

single-step tasks.

6.1.5 Notification Agents

Notification agents are the people who receive a notification

email in their inbox on completion of a work item. These

agents are entered on the Notification tab of the dialog

step. Again, you can use HR organizational objects, security

roles, rule, user ID, or an expression to assign these agents.

Notification will be sent to the email address maintained in

their user master record. You can customize the notification

text in the task definition under the Description tab. You

can change the text type to Completion Text and then

maintain the corresponding text. Figure 6.8 shows the

option of maintaining a notification agent for work item

completion.

Figure 6.9 shows how to maintain the completion text for a

notification under the task Description tab.

Figure 6.8 Maintain the Agent Assignment for the Work Item Completion

Message at the Workflow Step Level

Figure 6.9 Maintain Notification of Completion Text in the Task Description

Tab

It’s also possible to configure push notifications for work

item creation to the selected agents based on settings

made in the Notification tab. You can configure actions

(only for the user decision step) and texts for notification.

The users directly get an option to Approve or Reject the

work item from the push notification message on the SAP

Fiori launchpad.

6.2 Agent Determination Rules

Rules can be created via Transaction PFAC. They may be

also displayed or maintained via the variant Transactions

PFAC_DIS and PFAC_CHG, respectively. Each rule gets an

eight-digit system-generated number (per the prefix

number configuration defined in Transaction SWU3). Rules

are identified by the prefix “AC” and the eight-digit number.

Rules may be tested via Transaction PFAC using the

Simulate option or by executing function module

RH_GET_ACTORS. Rules are the most commonly used option to

determine responsible agents for a workflow step (along

with expressions) or as the default rule for a single-step

task. Rules are also used at the task level to determine the

deadline or notification agents for single-step tasks.

In the following sections, we’ll go through the details of how

a rule is created, the most commonly used rule types, how

to define a rule container and perform binding with the

workflow step, and the steps to create each rule type in

detail. These sections will help you get familiar with rule

definition and the steps to develop a simple rule for your

workflow.

6.2.1 Rule Definition

When you define a new rule from Transaction PFAC, you

must enter a rule short ID or abbreviation and a name. Then

you must choose the type of the rule under the Category

dropdown. The most commonly used options for rule types

are the following:

Agent Determination: Responsibilities

Agent Determination: Function to Be Executed

Agent Determination: Organizational Data

Figure 6.10 shows the detail screen for creating a new rule

from Transaction PFAC once you enter the rule abbreviation

name and press (Enter). We’ll look at each of these rule

types in detail in Section 6.2.4.

Figure 6.10 Creating a Rule from Transaction PFAC

After selecting the rule type, you can select the Terminate

if Rule Resolution W/O Result checkbox. This checkbox if

selected, would terminate the workflow and put in an error

state if no agents are determined for a rule at the workflow

step level. In this case, if there is a default rule maintained

at the task level, then it will be ignored. The termination of

the workflow occurs before even the task work item is

generated, as the rule resolution at the workflow step level

happens before task work item creation. The workflow may

be restarted after error, once the issue with the rule

resolution has been fixed.

On the other hand, if this checkbox isn’t selected, then the

workflow would not go into error if rule resolution failed. In

this case, the workflow would remain in progress, but the

task work item would not be in anyone’s inbox. These

hanging work items can be analyzed and processed by the

workflow administrator via Transaction SWI2_ADM1. With

this transaction, the administrator can reexecute the rule if

the problem has been fixed or forward the work item to

another user.

Note

Both selecting and deselecting the Terminate if Rule

Resolution W/O Result checkbox requires workflow

administrator intervention in case the agent

determination fails, which is feasible. However, for critical

business processes, it may be better to design the agent

determination in a way to always have a fallback agent.

This may be done via secondary priorities or directly via

ABAP code with a backup logic that gets executed when

the primary logic fails.

6.2.2 Rule Container

On the Container tab, you define the importing container

elements that will be used as criteria for executing your rule

logic. The container elements may be scalar or multiline.

Create the container elements similar to workflow

definitions or task definitions. Figure 6.11 shows a view of

the Container tab inside the rule definition in Transaction

PFAC, where you can define new container elements per

requirement in your rule. Containers were discussed

previously in Chapter 3 in additional detail.

Figure 6.11 View of the Container Definition for Rule

6.2.3 Binding to the Rule Container

Once you’ve created your rule and you want to add it to a

workflow step, you must also maintain the binding between

the workflow container elements and the rule container

elements. The binding editor can be opened by clicking on

the Binding button under the rule number in a dialog

workflow step from Transaction SWDD. For the task default

rule, you must enter the rule number in the Default Rules

tab of the task definition in Transaction PFTC and then click

on the Binding button.

Figure 6.12 displays a sample binding between the workflow

container and rule container. Through this binding, the data

from the workflow is mapped to the rule, which can be used

in the agent determination.

Figure 6.12 Example of Binding between the Workflow Container and Rule

Container

If the rule is maintained at the task level, then the same

binding must be maintained between the task container

elements and the rule container elements.

The output of the rule resolution is made up of the selected

agents for the workflow step or single-step task. Once the

dialog step using the rule has been completely executed,

you’ll be able to see only the actual agent of the work item,

not the selected agents determined by the rule. If you want

to track the selected agents of the rule, add a binding from

the system container element _RULE_RESULT of your rule to

your workflow container element (task container element if

the rule is at the task level), so that the selected agents will

be saved in your workflow log.

6.2.4 Rule Types

In the following sections we’ll go into detail about the three

rules types we first introduced in Section 6.2.1.

Agent Determination with Responsibility

A rule definition with responsibility is used when you can

segregate different groups of users based on some clearly

defined criteria. Let’s consider a simple example (see

Table 6.1) for a rule used to determine the approvers for a

purchase order release workflow.

Condition Field Value From Value To Approver

Purchase Org 1,000 USER1

Purchasing Group A01

Net Amount (Dollar) 0 1,000

Purchase Org 1,000 USER2

Purchasing Group A01

Net Amount (Dollar) 1,000 2,000

Purchase Org 1,000 USER3

Purchasing Group A02

Net Amount (Dollar) 0 5,000

Table 6.1 Business Scenario for Rule with Responsibility

In this scenario, you have three criteria based on which the

agent determination for purchase order release should

happen. These are purchasing organization, purchasing

group, and net amount of the purchase order. These three

condition fields will be created as container elements in

your rule definition.

Now you need to create a responsibility definition based on

each unique combination of the three criteria field values.

Some of these criteria fields may include a range, for

example, the purchase order net amount. You can create a

responsibility definition from Transaction OOCU_RESP.

Note

Rule definition is a cross-client workbench object.

However, rule responsibilities are like master data. You

need to create them in each system and client separately.

Although it’s possible to capture the responsibilities in a

Customizing transport and move them across systems

and clients, it’s generally not recommended because, in

most cases, the master data for the responsibility

definition will vary across systems, and the users or

organizational objects may be different between

development, test, and production systems.

Once you enter the rule number in Transaction OOCU_RESP

and click on the Create button inside the responsibility

definition, you need to enter a responsibility short

abbreviation ID (Object abbr.), a Name, and a Start date

and End Date. The default start date is always today, and

the default end date is 12/31/9999. However, you can

change the validity per your requirement. Figure 6.13 shows

the responsibility creation screen once a rule has been

entered in Transaction OOCU_RESP. You then click on the

Create responsibility button.

Figure 6.13 Responsibility Creation Screen in Transaction OOCU_RESP

When you press (Enter), you’ll be prompted to enter the

combination of the rule importing data elements for your

current responsibility. For example, in our example for the

first responsibility definition, you’ll enter the data listed in

Table 6.2.

Field Value

Purchase Org 1000

Purchasing Group A01

Net Amount (Dollar) 0; 1000

Table 6.2 Sample Data Entered While Creating a Responsibility Definition in a

Rule

Figure 6.14 shows the visual representation of the data that

is entered in the Responsibility definition based on

Table 6.2.

Figure 6.14 Responsibility Definition Details View inside Transaction

OOCU_RESP

When you press (Enter), you come back to the overview

screen, where you can now select the Insert Agent

Assignment button to maintain the agent for this

responsibility definition. With this option, you are first

prompted to select the agent object type, for example,

Organizational Unit, Position, Job, Person, or User.

When you select an object type, you need to enter the

corresponding object ID. In our example, select the object

type as User and enter the Object ID as USER1 (see

Figure 6.15). (In the actual system, USER1 should be

replaced by a valid user that you want to select for this

responsibility.) Next, you select the user ID from the

dropdown and the agent assignment is inserted for the

selected responsibility, as shown in Figure 6.16.

Figure 6.15 Agent Assignment for Rule Responsibility Definition: Selection of

Agent Type

Figure 6.16 Agent Assignment Created for the Responsibility Definition

This completes the first responsibility definition for your

rule. Repeat these steps for all combinations of the criteria

fields per your requirement, and add as many agents to

your responsibility definition as you need to.

If you need to delete an agent assignment, then select the

responsibility name in the overview screen, and click on

Delete Agent Assignment option. You can also delimit the

agent assignment for a particular responsibility by choosing

a validity end date.

Secondary Priority in Rule with Responsibilities

When you create or edit a responsibility definition from

Transaction OOCU_RESP, you can enter a priority number.

When the rule resolution happens, the system will

evaluate the responsibilities with the highest priority. For

example, if you maintain your normal responsibility

definitions with priority 99 and another responsibility with

priority 01, the system will evaluate the 99 priority

responsibilities first, and if this doesn’t match the runtime

data from the workflow, then it only will proceed to

evaluate the 01 priority responsibility. You can use this

secondary priority approach to design a fallback agent for

your agent assignment rule.

You can test your rule by using the Simulate button in

Transaction PFAC.

Agent Determination with Function Module

This approach of rule determination gives the maximum

flexibility to the developer. But on the con side, it has less

visibility than the rule with the responsibility option. It’s hard

for a business user to analyze failed rule resolutions with

this type of rule. In concept, this approach is like the one

using an expression at the workflow step level for rule

determination, where you use a background task to

encapsulate the logic to determine the agents for a

subsequent dialog step. Generally, this type of agent

determination rule is recommended for complex logic or

where you already have standard or custom tables from

where the agent may be determined, such as a rule to

determine the cost center responsible person, a rule to

determine the work breakdown structure (WBS) responsible

person, or a rule to determine the approver for the purchase

order release strategy.

Note

If the agent determination logic is complex with multiple

levels of calculation or cross-referencing, then it may be

better to add the logic in a background task, instead of a

rule, which is directly assigned to a workflow step. Adding

the logic in a background method gives you better control

over raising proper meaningful exceptions at each stage

of failure, which could be very useful during analysis of

the exception via the workflow log. Rules with function

modules have only one exception (mentioned in the

following table), which doesn’t provide any details on

what failed exactly.

For creating a rule using a function module, choose the

category as Function to be executed, as shown earlier in

Figure 6.10. Enter a function module name that has the

interface detailed in Table 6.3.

Parameter

Type

Name Data Type

Reference

Meaning

Table AC_CONTAINER SWCONT Importing rule

container

Table ACTOR_TAB SWHACTOR Output multiline

agent list

Exception NOBODY_FOUND Exception for no

agents found

Table 6.3 Interface Definition of a Rule Function Module

Next you need to create container elements in your rule for

the importing parameter to the rule. Inside the function

module logic, you’ll be reading the container elements that

will be used as agent determination criteria. After executing

the logic, the agents must be returned in export parameter

ACTOR_TAB with line structure SWHACTOR, which means that all

agents must have the Object Type prefix (e.g., US for user,

O for organizational unit, S for position, etc.), along with the

corresponding Object ID.

Raise exception NOBODY_FOUND when no agents can be

determined through the required business logic. This

exception, in conjunction with the Terminate If Rule

Resolution W/o Result setting, will enable you to

terminate the workflow in error state if the agent

determination fails.

Let’s consider the example where we’re trying to determine

the approvers for a sales invoice release workflow. The

approvers are maintained in a set of custom tables based on

sales document type (AUART), billing type (FKART), sales

organization (VKORG), and distribution channel (VTWEG). In

addition, each approver has threshold amount beyond which

they need to approve the invoice.

Listing 6.1 contains sample code for the agent

determination rule using a function module.

FUNCTION z_invoice_approvers .

*"--

""Local Interface:

*" TABLES

*" AC_CONTAINER STRUCTURE SWCONT

*" ACTOR_TAB STRUCTURE SWHACTOR

*" EXCEPTIONS

*" APPROVER_NOT_FOUND

*"--

 INCLUDE <cntn01>. " Include for Container Macros

 DATA : lt_holders TYPE STANDARD TABLE OF swhactor, " Rule Resolution Result

 ls_holders TYPE swhactor, " Rule Resolution Result

 lv_auart TYPE auart, " Sales Document Type

 lv_vkorg TYPE vkorg, " Sales Organization

 lv_vtweg TYPE vtweg, " Distribution Channel

 lv_netwr TYPE netwr, " Net Value in Document Currency

 lv_fkart TYPE fkart. " Billing Type

 CONSTANTS : lc_otype TYPE otype VALUE 'US'. "Agent type

 swc_get_element ac_container 'ZWCAUART' lv_auart. "Sales order type

 swc_get_element ac_container 'ZWCVKORG' lv_vkorg. "Sales Org

 swc_get_element ac_container 'ZWCVTWEG' lv_vtweg. "Distribution Channel

 swc_get_element ac_container 'ZWCNETWR' lv_netwr. "Net value of billing

 swc_get_element ac_container 'ZWCFKART' lv_fkart. "Billing Type

* Reading the approver list comparing sales order type, billing type

* sales org, distribution channel, net amount of billing

 SELECT zotc_inv_acct~auart, " Sales Document Type

 zotc_inv_acct~fkart, " Billing Type

 zotc_inv_acct~vkorg, " Sales Organization

 zotc_inv_acct~vtweg, " Distribution Channel

 zotc_inv_acct~approver_group, " Approver Group

 zotc_inv_acct~bname " User Name in User Master Record

 INTO TABLE @DATA(lt_approverlist)

 FROM zotc_inv_acct " Threshold amount for Inv Release

INNER JOIN zotc_inv_apprvr "Invoice Release to Accounting Approver

 ON zotc_inv_acct~approver_group = zotc_inv_apprvr~approver_group

 WHERE auart = @lv_auart " Sales Document Type

 AND fkart = @lv_fkart " Billing Type

 AND vkorg = @lv_vkorg " Sales Organization

 AND vtweg = @lv_vtweg " Distribution Channel

 AND threshold_amount LT @lv_netwr. "Net value of Billing doc

 IF sy-subrc <> 0.

 CLEAR lt_approverlist.

 ENDIF. " IF sy-subrc <> 0

 CLEAR : lt_holders,

 actor_tab.

* Filling the agents in actor tab

 lt_holders = VALUE #(FOR <ls_approverlist> IN lt_approverlist

 otype = lc_otype

 (objid = <ls_approverlist>-bname)).

 APPEND LINES OF lt_holders TO actor_tab.

 DATA(lv_num_lines) = lines(actor_tab).

 IF lv_num_lines IS INITIAL.

 RAISE approver_not_found.

 ENDIF. " IF lv_num_lines IS INITIAL

ENDFUNCTION.

Listing 6.1 Sample Code for Agent Determination Rule Using a Function

Module

Sometimes, it may be required to execute multiple rules

within your rule function module, depending on different

scenarios and output from the agents in your rule. For

example, let’s say you’ve developed a rule for a purchase

order release, where the approvers may be the cost center

responsible person or the WBS responsible person,

depending on whether the purchase order item is linked to a

cost center accounting object or a WBS accounting object.

You already have standard rules available that determine

the cost center responsible person or WBS responsible

person. You can now create a function module that first

checks the account assignment category (EKPO-KNTTP) of

your purchase order item. If this is a cost center (K), then

execute the cost center person responsible rule and get the

agents; if it’s a WBS element, then execute the WBS person

responsible rule and get the agents.

Listing 6.2 contains sample code illustrating how to execute

a rule to get the agents.

swc_set_element lt_container 'PONumber' lv_ebeln.

CALL FUNCTION 'RH_GET_ACTORS'

 EXPORTING

 act_object = 'AC00800046'

 TABLES

 actor_container = lt_container

 actor_tab = lt_actor_tab

 EXCEPTIONS

 no_active_plvar = 1

 no_actor_found = 2

 exception_of_role_raised = 3

 no_valid_agent_determined = 4

 no_container = 5

 OTHERS = 6.

Listing 6.2 Sample Code Showing How to Execute a Rule to Determine the

Agents

One final note on using evaluation paths in rules: If you

have an organizational plan implemented via standard

transactions that you want to reuse to determine the agents

for your workflow, then you can use this option, which is a

variant of the agent determination with function module

approach. An evaluation path is a sequence of relationships

implemented in an organizational structure in HR. Each

evaluation path is identified by an ID. The input to the

evaluation path is usually a user ID or a person ID, and the

output is a list of organizational objects such as

organizational units, positions, or user IDs.

You can use standard program RHWEGID00 to find suitable

evaluation paths based on your input and desired output

object types. Some commonly used evaluation paths in SAP

are listed in Table 6.4.

Evaluation

Path

Description

WF_ORGRUN Find the organizational unit of a user ID or

person

US_CHEF Superior of a user

SAP_HOLD Holder of a position

MANAGER Manager of a user

Table 6.4 Some Common Evaluation Paths Available in Standard SAP

To create a rule with an evaluation path, you must enter the

function module as “RH_GET_STRUCTURE”. When you press

(Enter), you’ll be prompted to enter the evaluation path in a

new field. Figure 6.17 shows this example from Transaction

PFTC.

Figure 6.17 Rule with a Function Module Using an Evaluation Path

Next, you must create the rule container elements for

passing the input user ID or person ID to the rule in the

same screen as shown in Figure 6.11 earlier, which are

detailed in Table 6.5.

Element Data

Type

Description

OTYPE OBJEC-

OTYPE

Type of the organizational

management object

OBJID OBJEC-

REALO

ID of the organizational management

object

ORG_AGENT WFSYST-

AGENT

Organizational management object

Table 6.5 Container Elements Required for a Rule Using an Evaluation Path

You can pass the input organizational object by filling either

the OTYPE and OBJID or ORG_AGENT parameters.

Agent Determination with Organization Data

In this approach, you can create a rule with the category as

Agent Determination: Organizational Data. Here you

can link the code of a custom business attribute to an

organizational object in the organizational structure via a

business object. For example, if you have a Customizing

table for a customer service center, you can link the service

center code with an SAP organizational unit and determine

all the users under the organizational unit as service center

technicians. There are some typical configuration and

development steps required for this link (see Figure 6.18):

1. Create a custom business object from Transaction SWO1

to link your custom attribute code to the organizational

object. The key field of the business object should be the

same attribute code. In addition, you need to classify

the business object as Organizational type under

header data on the General data tab.

2. Maintain the organizational object types

(Organizational unit, Position, Jobs, Persons, etc.)

that may be linked to your custom business object

instances.

3. Maintain the assignment of organizational object IDs to

your custom business object via Transaction PFOM.

4. Create your custom rule with the type as Agent

Determination: Organizational Data, and enter your

custom business object type name in OrgObj type.

5. To map the data of the custom attribute from your

workflow to your rule, you need to create an instance of

your custom business object from your workflow and

bind that element to your rule container element.

The assignment of organizational object to your custom

attribute is saved in HR Infotype 1208.

The output of the rule will be all the users maintained

against the organizational object assigned to your custom

attribute.

Figure 6.18 Rule Definition Using Organization Data Approach

Note

Agent determination organization data isn’t a

recommended approach for creating new agent

determination rules anymore. This is because it involves

creating custom business objects and involves quite a bit

of maintenance to keep the Customizing table entries and

the organizational structure in sync. It’s preferable to use

other approaches using HR organizational structure data

such as evaluation path or even a custom table with a

function module–based rule in this case.

6.3 Possible Agents in Tasks and

Default Rules

Possible agents may be maintained at the task definition

level using menu path Additional Data • Agent

Assignment • Maintain. The first step is to maintain the

agent assignment attributes, as shown in Figure 6.19.

Figure 6.19 Maintain Agent Assignment Attributes at the Task Level

If you want to keep the possible agents open to all SAP

users in the system, then you can choose the General Task

radio button, as shown in Figure 6.19. In that case, you don’t

need to proceed to the next step. If, however, you want to

allow only a specific group of users to be able to execute a

particular task, then choose one of the other three radio

buttons:

General forwarding allowed

This option allows you to maintain an agent assignment

for possible agents. However, any user who has received

the work item for this task in their inbox will be able to

forward the task to any SAP user in the system. So, with

this option, the restriction with possible agents is lost at

the time of forwarding.

General forwarding not allowed

This option restricts the general forwarding of the work

items for this task and forces the user to respect the

agent assignment done at the task level, which means

that you can only forward the work item to other users

who are within the possible agents group.

Forwarding not allowed

This option restricts forwarding completely. Work items for

this task may only be executed by one of the users who

have received it in their inbox.

Once you select the agent assignment attribute as a

nongeneral task, you can create an agent assignment by

clicking on the Create Agent Assignment button, as

shown in Figure 6.20.

Figure 6.20 Create Agent Assignment

In the next screen in Figure 6.21, you get the option to

select any one of the agent types. Here you can choose

Role, to tie the possible agents to a security role, or you can

choose Job, Organizational unit, Work Center, or

Position to tie the agent assignment with the HR

organizational structure objects. The option to maintain user

IDs directly isn’t recommended for a productive workflow

scenario as this reduces flexibility in your workflow design.

Figure 6.21 Popup to Select the Type of Agent

Once you’ve selected the agent type, you need to select the

agent type object. For example, if you’ve selected Role as

the agent type, then in the next screen in Figure 6.22, you

must search and select a security role to assign as your

possible agents for the task definition.

Figure 6.22 Popup to Select Role

Returning to the topic of default rules, they are always

defined at the task definition level under the Default rules

tab in Transaction PFTC. There can be three different kinds

of default rules:

Agent rule

This rule is used to determine the responsible agents for a

task.

Deadline recipient rules

This type of rule may be defined to determine the agents

for missed deadlines related to latest start, latest end, or

request end.

Recipient for completion message

This type of rule is used to determine the email address of

the user who should receive the message on completion

of a work item.

Figure 6.23 shows the Default rules tab under the task

definition in Transaction PFTC. You need to enter the Rule

number for the appropriate default rule type. Recipients for

missed latest start, missed latest end, and missed

requested end are all grouped under deadline recipient

rules.

Figure 6.23 View of Default Rules under Task Definition in Transaction PFTC

All three kinds of rules have the same structure and options

as that of the rule to determine responsible agents, which

was detailed in Section 6.2. You only need to consider the

following points while maintaining a default rule:

Default rules have secondary priority compared to any

agent determination maintained at the workflow step

level for a multistep task. For single-step tasks, they are

the only mechanism for maintaining responsible or

deadline agents. For multistep tasks, they come into play

only when the agent determination fails at the workflow

step level or if there is no agent maintained at the

workflow step level.

If you’ve maintained a rule at the workflow step level,

which has the Terminate if rule resolution w/o Result

checkbox selected, then failure in rule resolution won’t

trigger the default rule.

Binding must be maintained between the task container

elements and rule container elements in this case.

Agents determined through the default rule should also

respect the possible agents assigned to the task

definition. Any responsible agent determined via the

default rule who isn’t a possible agent won’t be able to

receive the work item in their inbox.

6.4 Organizational Structure

Definition and Linking to Workflow

Agents

Using the organizational plan to assign responsible agents

to a workflow step is another common approach for agent

determination. Usually, we don’t want to directly assign user

IDs as agents in a workflow step because users change,

move across departments, or join and leave a company. So,

to keep your workflow design flexible and avoid making

frequent changes to your agent determination process, it’s

advisable to use the organizational structure for assigning

the agents wherever possible. You can use the basic

organizational plan in a system even without HR. If you do

implement HR in your system, then you also have access to

the extended organizational plan with some more features.

With an organizational plan, you can create or maintain

organizational units, representing your business units or

departments. You can link one organizational unit to another

organizational unit, establishing a hierarchy and maintaining

relationships. You can assign one or more positions under an

organizational unit, establish relationships between them

(e.g., manager and reportees), and assign holders to these

positions via persons and/or users. You can also assign jobs

to positions, which helps you define and group

responsibilities and roles. In addition, you can delimit or

delete any organizational object or relationship in the plan.

There are various transactions available to maintain the

organizational structure in SAP, for example, Transaction

PPOCW, Transaction PPOMW, Transaction PPOME,

Transaction PPOSE, and so on. Figure 6.24 shows the view of

a typical organizational structure definition in SAP with

organizational units, positions, persons, jobs, and users.

Figure 6.24 View of an Organizational Structure in SAP S/4HANA with

Organizational Units, Positions, Persons, and Users

Some common recommendations and best practices in the

use of organizational structure with workflow are as follows:

Users may be linked via organizational objects to workflow

agent assignment steps. For example, you can assign an

organizational unit as the agent to a workflow user

decision step, which would automatically pull all the users

assigned to all the positions under that organizational unit

as agents. Although the organizational unit or the position

may be hardcoded as an agent, it’s better to use

expressions or rules where the organizational object is

returned as an agent dynamically based on some

business attribute or relationship.

For example, in a workflow to approve journal entry

requests, you may have an organizational structure set up

based on the controlling area and the profit center, and

you can read the profit center on the journal entry

document and link it to an organizational unit in your plan

so that all the users linked to the unit may be determined

as agents.

Consider another example for approving leave requests

for an employee. Here the employee submitting the leave

request is linked to a position via the organizational plan,

and the manager relationship of that position is

determined and sent as the approver of the leave request.

The holder of the manager position receives the work

item in his inbox.

Organizational objects may be assigned a validity, which

is by default set from the creation date to 12/31/999.

However, this validity may be updated to reflect

temporary relationships, or the validity may be

terminated on a certain date as part of a delimit action.

Many standard evaluation paths are available to

determine different relationships between organizational

objects. These evaluation paths may be used via the rule

with function module option (see Section 6.2.4) or

evaluated via custom logic in a background task.

Organization data may also be integrated into the agent

assignment step via the Rule with Organization Data

option where you can link an attribute code from a

Customizing table to an organizational object from

Transaction PFOM via a business object.

Organizational objects may also be integrated into

possible agent assignments at the task definition level.

But it’s better to use security roles as an alternative in

this case because that gives you the option to keep the

underlying transaction authorizations in sync with the job

role of the people who can execute the task.

6.5 Summary

In this chapter, you’ve learned about the different types of

agents in workflows. You now understand the difference

between possible agents, responsible agents, and excluded

agents, as well as the concept of selected agents and actual

agents. We covered the details of agent determination rules

and explored the different approaches used to build a rule in

SAP Business Workflow. Then, we looked at possible agent

definitions in your task definition and defining default rules

in tasks in more detail. Finally, we talked about

organizational structures in SAP and how to integrate

organizational objects into your workflow agent

determination step.

7 Email Notifications and

Other Runtime Jobs

SAP Business Workflow uses different types of

notification mechanisms for business users. In this

chapter, you’ll see how these notifications are

configured and implemented in different workflow

scenarios.

SAP email notifications are automated messages sent by the

system to specified recipients to communicate information

about various events or status updates. SAP email

notifications play a vital role in optimizing business

processes and improving overall productivity. Automated

email notifications keep stakeholders informed in real time.

There are different email notifications scenarios such as job

status notifications, error notifications, workflow

notifications, and so on.

However, in this chapter we’ll talk about notifications

related to workflows. In SAP Business Workflow, you

generally use three types of notifications, as follows:

Regular notifications

These are sent to the performer of a task when the task is

created. They are used to notify the receiver about the

new task in their work inbox.

Reminders

These are emails sent to the performer of a task a short

time before the end date or the due date of the task if the

task isn’t completed.

Escalations

These are notifications sent to the performer’s supervisor

or to another responsible person if the performer misses

the task completion due date, as specified in their work

inbox.

In this chapter, we’ll discuss in detail the prerequisites,

configurations steps, and other batch jobs to achieve these

workflow notifications.

7.1 Prerequisites for Setting Up

Email Notifications in Workflow

There are some configurations that need to be performed as

part of the email notifications setup. Before that, we’ll

discuss two prerequisite activities and how to perform them:

setting up email IDs for SAP users and setting up

SAPconnect.

7.1.1 Setting Up Email IDs for SAP Users

Notifications are sent to external email IDs of SAP users; the

email ID is retrieved from the user master record. Therefore,

it’s necessary that the corresponding SAP users have the

email IDs maintained in the user master record. To check

the email ID of an SAP user, first open Transaction SU01 and

provide the user ID. Then display the record where you find

the details of the user attributes along with the email ID, as

shown in Figure 7.1.

Figure 7.1 Email Address to Be Maintained in the User Master

7.1.2 Setting up SAPconnect

In Transaction SCOT, you configure the communication

interface SAPconnect, which allows you to send external

emails from the SAP system. You’ll need to make the

following settings:

1. Select Settings • SMTP Connection • Outbound

Messages • SMTP Nodes.

2. Double-click on SMTP, as shown in Figure 7.2.

The SAPconnect: General Node Data of Node SMTP

screen appears, as shown in Figure 7.3.

3. Select the Node in use checkbox.

4. Enter the SMTP Mail Host name.

5. Enter the SMTP Mail Port number (usually, 25).

6. Click on the Set button next to the Internet option.

7. Click on the checkmark button to proceed.

Figure 7.2 Selecting SMTP Node

Figure 7.3 Setting Up SMTP Node

8. On the subsequent SAPconnect : Address Type for

Node screen, enter details in the Address areas

section (see Figure 7.4). This specifies to which address

(domains) the emails can be sent. “*” means emails can

go to any email addresses, while *gmail.com means the

emails can go only to users in the gmail.com domain.

Figure 7.4 Transaction SCOT Configurations: Further Settings

Tips

It’s always a security best practice to restrict the email

addresses to some domain instead of making it “*”.

Generally, a company domain is used along with some

specific business partners’ domains.

Next, we’ll create the send jobs and schedule the emails to

be sent on a periodic basis.

7.2 Classical Work Item Email

Notifications via Program

RSWUWFML2

There are business requirements where you need to send

notifications to external email IDs to process the work items

to the corresponding users as all business users don’t use

SAP inbox on a regular basis. Program RSWUWFML2 sends

notifications for work items by email to SAP users who have

an internet email address. You can also send SAP shortcut

attachments using this report. These enable the recipient of

the email to display or execute the work item directly, or to

open Business Workplace in SAP GUI for Windows.

For a periodically scheduled run (not a single run), the

report generates notifications for work items for which the

following applies:

The work items must have the status Ready.

The work items have been created since the last run (the

time and date of the last run is saved in a table).

The work items have been changed since the last run by

one of the following operations: forward, replace, end of

resubmission, or requested start reached.

The work items have a recipient with a valid internet

email address.

Figure 7.5 shows the details of the selection screen of

program RSWUWFML2.

Figure 7.5 Program RSWUWFML2 to Send Notifications for Work Items

One advantage of program RSWUWFML2 is that users can

be notified easily who don’t normally use Business

Workplace of a particular SAP system because they use

another email client or another SAP system. Workflow

patterns or tasks don’t need to be modified. The generation

of notifications doesn’t need to be modeled in SAP Business

Workflow.

On the other hand, there are some restrictions when it

comes to program RSWUWFML2. The report excludes work

items that a workflow inbox has reassigned at a later stage

due to changes in the organizational structure. Position

substitutions are also not included. This means that the

report doesn’t send any notifications for work items that

appear in the workflow inbox of an agent due to a position

substitution.

Normally, SAP office messages from the Documents folder

aren’t forwarded by the report. Document and object

attachments of a work item are also not sent. The messages

are generated in text-only format.

There is no password caching for shortcuts. If single sign-on

isn’t active, the user needs to log on to the system

separately. A user can be informed about multiple work

items in a collective notification. However, the collective

notification doesn’t contain details about the individual work

items. No container variables or container expressions can

be used in the descriptive texts (before work item

description, after work item description).

The language settings of the work item recipient aren’t

taken into consideration when creating the message. The

generated texts sent to the recipients are based on the

Language for E-Mail Texts parameter given in the

selection screen of report RSWUWFML2. Messages can only

be sent to Simple Mail Transfer Protocol (SMTP) addresses

(type INT) and groupware-specific forms aren’t supported.

Before we dive into using program RSWUWFML2, there are

some prerequisites. The recipients of email notifications

must have maintained an email address in the relevant SAP

system. You can maintain a user’s email address in either

the central address management (Transaction SU01) or the

personal office settings in Business Workplace, under

Automatic Forwarding. We no longer need to activate the

mail group in the general office settings for program

RSWUWFML2. In addition, the SAPconnect (Transaction

SCOT) setup needs to be completed that we discussed in

the previous section.

Let’s now discuss all the features and controls that you can

use for different parameters in the selection screen of this

program.

In the Instance Data section (see Figure 7.6), you have the

following fields:

Job Suffix

Using a job suffix enables you to have multiple instances

of the report running simultaneously. Note that the times

for the last run are saved for the individual instances. You

can set the report parameters differently here.

Tasks (blanks = all)

You can restrict the selection of work items to work items

for tasks. You can select multiple tasks here.

Language for E-Mail Texts

You can specify the language in which the work item

description and the standard texts for the message are to

appear in the emails. The prerequisite is that the

corresponding translation is available.

If no language is specified, the work item description is

displayed in the original language of the work item and

the standard texts in the language of the user where the

report is scheduled.

New Work Items Only

This option enables you to deactivate the inclusion of

changed work items so that the same old messages aren’t

sent repetitively. This is recommended for performance

reasons.

With Passive Substitution

This option enables you to define whether the report

includes passive substitution. The inclusion of passive

substitution will decrease performance significantly.

Figure 7.6 Instance Data Section of the Selection Screen

There are only two options in the Send granularity section

(see Figure 7.7). If you change this setting, then the default

settings in the lower area of the selection screen are

changed dynamically:

One Message per Work Item

One message is sent for each new work item. This

contains the description of the work item and

accompanying texts, as specified under Standard Text

for Notification.

Collective Message

Only one message is sent for all new work items for a

particular user. The message doesn’t contain any

information about the individual work items.

Figure 7.7 Send Granularity Section of the Selection Screen

Executable attachments are SAP shortcuts that receivers of

messages can use to directly display a work item in the SAP

GUI for Windows. SAP shortcuts contain the relevant logon

language from the central address management

(Transaction SU01) for each individual receiver. The system

ID and the client contained in the shortcut correspond to the

system in which the report is running. In the Add

Executable Attachment to Message For section (see

Figure 7.8), you have the following fields:

Workflow Inbox Transaction

An SAP shortcut is added to the message so that the

message recipient can start Business Workplace directly

in SAP GUI for Windows.

Work Item Display

An SAP shortcut is added to the message so that the

message recipient can display the work item directly in

SAP GUI for Windows.

Work Item Execution

An SAP shortcut is added to the message so that the

message recipient can execute the work item directly in

SAP GUI for Windows. Secondary methods are also

executed at the same time.

Figure 7.8 Add Executable Attachments to Message Section of the

Selection Screen

The Standard Text for Notification section (see

Figure 7.9) enables you to define the message subject and

text, which is added to the work item description. The text

contains general information for the user about what to do

with the message. Here you have the following fields:

Message Class for Subject

Message class of a table T100 message (Transaction SE91)

from which the subject line for the message is

determined. Message class SWU_NOTIF contains the

messages that are shipped by SAP.

Message Number for Subject

Number of a T100 message (Transaction SE91) from which

the subject line for the message is determined. The T100

message can contain two parameters. Parameter &1 is

replaced by the system ID. Parameter &2 is replaced by

the work item text.

Before Work Item Description

ID of a SAPscript text (Transaction SE61) of type Text in

Dialog, which is inserted before the actual work item

description in the message. The text contains the form of

address for the user and the reference to SAP Business

Workflow. Make sure that the text matches the send

granularity. The system proposes an appropriate text.

Includes and symbols within a SAPscript text are

expanded. Workflow-specific variables or expressions

(e.g., from the container) can’t be used, however.

After Work Item Description

ID of a SAPscript text (Transaction SE61) of type Text in

Dialog, which is inserted after the actual work item

description in the message. Make sure that the text

matches the send granularity. The system proposes an

appropriate text.

Figure 7.9 Standard Text for Notification Section of the Selection Screen

In the SAP Shortcut Parameter section (see Figure 7.10),

you can specify the ID of an entry in the SAP Logon, which is

then included in every shortcut that is sent in

the Description parameter. This parameter determines the

SAP Logon entry with which the logon to the SAP system is

executed. The prerequisite for this is that you can guarantee

that saplogon.ini contains the relevant entry on all user PCs.

The parameter is only required and recommended if there

are multiple saplogon.ini entries for the same system on the

user PCs. This enables you to control a specific entry, for

example, the entry that is configured for single sign-on

(SSO).

Figure 7.10 Section SAP Shortcut Parameter of the Selection Screen

In the Exits section (see Figure 7.11), you can save function

modules you’ve created yourself that are called at an

appropriate point during the report run. The modules must

have a specific signature. SAP Note 808971 describes this in

more detail. You have the following two fields:

FM for Preparatory Phase

This module is called prior to the selection of the work

items. You can use this module to assign values to text

symbols in the SAPscript texts, for example.

FM for Address Determination

This module is called when the email address of a work

item processor is to be determined. You can use this

module to override the default procedure for determining

an address, for example, to determine an address from a

container element of the work item.

Figure 7.11 Section Exits of the Selection Screen

Let’s now move on to the Data for an Individual Run

(Time Stamp Not Set) section (see Figure 7.12). A single

(individual) run is performed if the input fields contain a

data, time, and optionally a user. A single run is

recommended if work items are to be sent again from a

particular time and date, for example, due to a problem

when sending the emails. Contrary to a periodically

scheduled run, in a single run, the time of the last run isn’t

saved. Here we have the following fields:

From work item creation date

This is the first day when work items are to be included.

From work item creation time

This is the time on the first day when work items are to be

included.

User (blank = all)

Notifications are only created for work items that this user

has in their Business Workplace. You must not use this

option to restrict the sending of notifications in the

productive environment to certain users.

Figure 7.12 Data for an Individual Run (Time Stamp Not Set) Section in

the Selection Screen

During its run, the report writes a log in a spool file and an

entry in the application log. You can specify what is logged

in the Log section (see Figure 7.13):

Errors Only

Only error messages are logged.

All

Success and error messages are logged.

You can display the application log by calling Transaction

SLG1. Enter the Object as “WF” and the Subobject as

“NOTIFICATIONS” as the selection values.

Figure 7.13 Log Section of the Selection Screen

Now let’s see some other general features of this report. If

one message is sent for each work item, the message

contains the task description and the standard text. If one

message is sent for all work items, the message contains

just the standard text. Express emails are sent for express

work items.

If the messages include executable attachments, they are

sent to each user individually. If executable attachments

aren’t required, all messages that refer to the same work

item are sent to a receiver list, which comprises the

selected agents. If you’ve selected a Collective Message,

only one message is sent to each receiver per run,

regardless of the number of work items for this user.

The results of database queries (e.g., email addresses) are

buffered to improve system performance.

When the email messages are sent to users’ inboxes, a

shortcut for SAP Logon can be sent as an attachment in this

notification message from report RSWUWFML2. The usual

logic when using SAP shortcuts applies when logging on to

execute shortcuts. If the parameter Description is specified

in the SAP shortcut, but there is no saplogon.ini entry with

this name, the system displays an error message when you

attempt to execute the shortcut. If the

parameter Description isn’t specified, a saplogon.ini entry

with the appropriate system is selected instead. The

prerequisite for this is that the entries in SAP Logon were

created from the group or server selection. Otherwise, the

system ID can’t be determined from the entry.

If a session with the relevant entries for

system/client/user/language is already open, a new session

is opened automatically without the user needing to log on.

If no such session is already open, the user must log on

again. If the selected saplogon.ini entry is configured for

SSO, the system logs the user on automatically. If it’s not

configured, the system displays a logon window in which the

user must enter their password.

Next let’s see some main points related to selection of work

items and recipients in this report. Report RSWUWFML2

determines the following internally:

1. The report determines the relevant work items. Dialog

work items and missed deadline work items are

included. Changes to the organizational structure aren’t

included.

2. The recipients for each work item are also determined.

Active and passive substitutions are included, but

position subscriptions aren’t. Substitute profiles and task

classifications are included.

3. Only receivers who have an internet email address (type

INT) are included.

4. Create the message body (partly work item–specific).

5. Send the message to all receivers.

Standard Variants

Variants can be defined for scheduling. If you use multiple

variants, you must at least use the job suffix to

differentiate between them.

Executing report RSWUWFML2 generates a log file and an

application log, as shown in Figure 7.14.

Figure 7.14 Sample Application Log Output of Program RSWUWFML2

7.3 Extended Notification

Configuration with Program

SWNCONFIG

There is another way of sending workflow notifications to

users: extended notification. In principle, it’s the same

usage as notification program RSWUWFML2, but extended

notifications provide more functionality and flexibility

because they are a notification framework, which is based

on ABAP handler classes. These handlers can be replaced by

custom code.

The processing of extended notification is divided into two

parts:

Selection of work items and creation of notifications

Delivery of the notifications via email or SMS

Extended notifications for SAP Business Workflow are

intended to inform users about work items that need to be

processed. Work items to be processed are dialog work

items and deadline items. The users are notified in the form

of messages. A message can be an email (HTML or plain

text) or SMS. Next, we’ll talk about overview of this

notification process and Customizing details of this process.

7.3.1 Overview of the Notification Process

As we just mentioned, the notification process via extended

notifications for SAP Business Workflow comprises two

phases:

Selection

The relevant work items are selected, and notifications

are created and stored in database table SWN_NOTIF.

Delivery

The notifications are selected from table SWN_NOTIF and

messages are created and sent to the users.

This initially requires Customizing via Transaction

SWNCONFIG (or Transaction SWNADMIN). Afterward,

program SWN_SELSEN must be scheduled periodically.

Program SWN_SELSEN processes both the selection and the

delivery.

Let’s get an overview of the Customizing process, which

we’ll discuss in detail in Section 7.3.2:

Selection

For the selection, a filter pair must be defined. A filter

pair consists of a full filter and a delta filter. One of the

filters is marked as the main filter (usually, the Full

filter). The filter pair is used to identify the relevant

work items, so single-step tasks can be maintained at

the filter pair.

In addition, a category must be assigned to the filter

pair. A possible category could be, for example, Leave

Request or Shopping Cart Approval. The

notifications, which are created during the selection

phase, are assigned to this category. The category is

important for the delivery later.

Each filter of the filter pair requires a selection

schedule. The selection schedule contains the

information when (weekdays, time, and interval) the

filter must be processed.

Delivery

For the delivery, a subscription must be defined. The

subscription defines who should be notified about which

work items and how the messages will look. The

subscription must be assigned to a category, as

discussed earlier. By doing so, the relevant work items

for the delivery are chosen. In addition, the recipient(s),

the delivery type (email, SMS), and the message

structure are configured.

The subscription requires a delivery schedule. The

delivery schedule contains the information when

(weekdays, time, and interval) the subscription must be

processed. This means when the messages should be

delivered.

Program SWN_SELSEN must be scheduled periodically.

Program SWN_SELSEN is responsible for the whole

notification process. At first, it processes the selections and

afterward the delivery, as follows:

Selection

The program reads the available selection schedules and

analyzes which of them are due. The following procedure

is done for each due selection schedule:

The assigned filter is retrieved.

Based on its assigned tasks, the relevant work items

are selected. This means the work items, which were

created or changed since the last processing of the

filter pair are selected.

The agents of these work items are determined. One

notification per work item and agent is created and

stored in database table SWN_NOTIF.

In addition, obsolete notifications are marked as

logically deleted in table SWN_NOTIF. A notification

becomes obsolete when the work item isn’t available

anymore in the inbox of its recipient, for example, due

to work item execution or forwarding to another user.

Delivery

The program reads the available delivery schedules and

analyzes which of them are due. The following procedure

is done for each due delivery schedule:

The assigned subscription is retrieved.

Based on its assigned category and recipient, the

relevant notifications from table SWN_NOTIF are selected.

The message content is created by using a Business

Server Page (BSP) application. The settings of the

subscription are considered for that.

The messages are sent to the recipients. The message

is marked a Delivered in table SWN_NOTIF.

7.3.2 Detailed Customizing

The Customizing of extended notifications can be done

either via Transaction SWNCONFIG or Transaction

SWNADMIN. It’s based on several database tables.

Transaction SWNCONFIG is a view cluster that contains the

maintenance views for most of these Customizing tables.

Due to this, Transaction SWNCONFIG is rather complex but

offers all possible Customizing options. Due to the

complexity of the Customizing tables and of Transaction

SWNCONFIG, a simplified Customizing transaction was

provided. Transaction SWNADMIN was created, which is a

BSP. Transaction SWNADMIN doesn’t provide all the possible

Customizing options, but it hides the complexity by

generating Customizing entries.

Tips

When first trying to configure extended notifications, try

via Transaction SWNADMIN, and then check the

corresponding Customizing in Transaction SWNCONFIG.

The following sections show the required Customizing via

Transaction SWNCONFIG.

Business Scenario

After executing Transaction SWNCONFIG, select business

scenario WORKFLOW (business workflow), as shown in

Figure 7.15. The scenario WORKFLOW is intended for the

extended notifications for business workflow, which means

for notifying the users about work items via email or SMS.

All the other configurations will be done under business

scenario WORKFLOW.

Figure 7.15 Business Scenario Workflow in Transaction SWNCONFIG

Category

From Transaction SWNCONFIG after selecting business

scenario WORKFLOW as described in the previous step,

select Category under Business Scenario. Then, create a

new category, as shown in Figure 7.16.

Figure 7.16 Creating a New Category by Copying the STANDARD Category

To create a new category Z_STANDARD under business

scenario WORKFLOW, the easiest way is to copy category

STANDARD, which is delivered by SAP. In this case, you can

also copy the assigned message templates. Otherwise, they

must be created and assigned manually. The category is

used during the selection and delivery phases. During the

selection phase, the work items are selected, and

notifications are created and stored in table SWN_NOTIF. The

notifications are assigned to the category of the filter that is

processed. The notifications are grouped via the category,

and the subscription is also assigned to the category. The

category tells which group of notifications should be

delivered.

Next, copy the corresponding message templates under the

Assigned Message Templates node as well, as shown in

Figure 7.17.

Figure 7.17 Message Templates under Category Also to Be Copied

Filter Pair

The filter pair defines which work items have to be selected.

It consists of a full filter and a delta filter. When a filter is

processed, the relevant work items are selected. The

processing of the full filter is different from the processing of

the delta filter, as follows:

Full filter

This selects all open work items (based on filter

criteria). The database selection is done from table

SWWWIHEAD and is independent from any time stamp.

The agents of these work items, including substitutes,

are determined.

A notification for each work item and agent is created.

New notifications are inserted.

Existing notifications that have become obsolete are

logically deleted (e.g., work item isn’t open anymore,

work item doesn’t exist anymore, work item was

forwarded to another user, etc.).

Delta filter

This selects all work items that were created or

changed since the last run of the filter pair. The data

selection is done via table SWWWIHEAD and table SWWLOGHIST.

The selection includes open and completed work items.

The agents of the open work items, including

substitutes, are determined.

A notification for each work item and agent is created.

New notifications are inserted.

Existing notifications that became obsolete are logically

deleted.

Existing notifications are modified in case of special

work item changes. But this case isn’t relevant for the

SAP Business Workflow scenario.

To create a filter, follow these steps:

1. First, create a full filter. To create a filter, from

Transaction SWNCONFIG under node Business

Scenario, select the subnode Filter Basic Data. Then,

click on New Entries. Under node Filter Basic Data,

select Filter Settings, and then add parameter DELTA

with a blank value.

2. Under Filter Basic Data, the field Category needs to

be filled up with the newly created category done in the

previous step. This will link the filters with the category.

This means that the notifications are assigned to this

category during the selection phase. You can see the full

filter in Figure 7.18.

Figure 7.18 Full Filter

3. Next, create a delta filter. The initial steps are the same

as for a full filter, but under node Filter Basic Data,

when you select Filter Settings, add parameter DELTA

with an “X” value, as shown in Figure 7.19.

4. For the delta filter, under the Filter Basic Data node,

the Main Filter value should be filled with the Full filter

that just got created. This will ensure that they both

interact as a pair. You can see the delta filter in

Figure 7.20.

Figure 7.19 Filter Settings

Figure 7.20 Delta Filter

Important

Delete Old Notifications in the filter should not be set in

the production system. This setting is only intended to be

used during the development phase if you want to start

from scratch; for example, you test a configuration. When

this option is set, all notifications belonging to the main

filter are deleted from the database table. This means a

delta handling can’t take place, and the reminder function

doesn’t work. In addition, the option influences the

performance in a negative way in that all notifications

belonging to this filter pair are first deleted physically

from the database. Afterward, the normal processing of

the filter is done (work item selection, agent

determination, etc.). To remove the notifications from

database table SWN_NOTIF, program RSWNNOTIFDEL should

be scheduled periodically to keep the data amount as

small as possible.

Selection Schedules

Our next step is to create a selection schedule for each

filter. The selection schedule defines when (weekdays, time

frame, and interval) the filter should be processed. (In

addition, Transaction SWN_SELSEN must be scheduled by

following the regular job selection procedure.)

To create a selection schedule for the full filter, follow these

steps:

1. Create a new schedule, and choose the full filter. To do

this from Transaction SWNCONFIG, select the node

Schedule Selection, and click on New Entries.

2. Mark all the checkboxes next to Weekdays (see

Figure 7.21).

3. The full filter should be processed once a day. Therefore,

enter the desired time into the Time from field as well

into the Time to field, and maintain the Time Zone.

Don’t enter a value into the Interval field.

To create a selection schedule for the delta filter, follow

these steps:

1. Create a new schedule, and choose the delta filter. To do

this from Transaction SWNCONFIG, select the Schedule

Selection node, and click on New Entries.

2. Mark all the checkboxes next to Weekdays (see

Figure 7.21).

3. The delta filter should be processed more frequently.

Maintain the start time (Time From), end time (Time

To), and the Time Zone. Enter the Interval (Minutes)

in minutes.

Figure 7.21 Schedule Selection for Full and Delta Filters

Delivery Schedule

Create a delivery schedule from Transaction SWNCONFIG by

selecting the Delivery Schedule node, and click on New

Entries, as shown in Figure 7.22. The delivery schedule tells

when the emails should be sent out. The delivery schedule

is later assigned to the subscription. A delivery schedule can

be assigned to more than one subscription. Figure 7.22

shows the delivery schedule.

Figure 7.22 Delivery Schedule

Subscription

The subscription is required for the delivery phase. Emails

are only delivered if a subscription is available. It contains

the following information:

Which notifications should be delivered (Category)

When they should be delivered (Delivery schedule)

What the email/SMS should look like

Following are the steps to create a subscription and define

its settings:

1. From Transaction SWN_CONFIG, select the Business

Scenario and Category. Under that, select subnode

Subscription Basic Data. Choose the newly created

category. (The notifications created during the selection

phase were assigned to the category. By using the same

category in the subscription, the notifications, which

should be sent out, are chosen.)

2. From the Subscription Basic Data node, click on New

Entries to create a new subscription.

3. Assign the delivery schedule created in the previous

step.

4. Choose the delivery type:

E_MAIL_HTML: HTML mail

E_MAIL_PLAIN: Plain text mail

SMS

5. Choose the granularity:

N: One email contains a list of work items.

1: For each work item, one email is sent.

C: Only a general information “you have new work

items” is sent out, which doesn’t contain work item–

specific data.

6. Define the recipients (Recipient Address, Recipient

Type, and Handler fields). There are several

possibilities:

The emails should be sent to all work item agents:

Recipient Address = * and Recipient Type = RML.

The emails should be sent to one particular user:

Recipient Address = <User ID> and Recipient

Type = RML.

The emails should be sent out to a list of work item

agents, but not to all: Recipient Address = *,

Recipient Type = CUS, and Handler = ABAP class.

For further information, see SAP Note 847042 (Handler

for Filtering Notifications in the Subscription).

7. Maintain the subscription settings by selecting the

Subscription Settings node under the Subscription

Basic Data node, as shown in Figure 7.23.

Figure 7.23 Subscription and Subscription Settings

Generally, the following parameter values are filled in

this section: REMINDER DAYS (after x many days, a

reminder is sent), SHOW_ACTION_DISPLAY_AS (a

Display Work Item link is generated into the email),

and SHOW_ACTION_EXECUTE_AS (a Execute Work

Item link is generated into the email).

7.4 Adding Inbox and Work Item

URL Links to Workflow Work Item

Notifications

When the notification is sent to the user’s email inbox to

process the work item, sometimes it’s required to provide a

URL link of the corresponding work item because all

business users aren’t used to opening this from the SAP

inbox and processing from there. Adding this work item URL

is part of Transaction SWNCONFIG features and it’s done

through a handler class.

At the category level of Transaction SWNCONFIG, there are

three handler classes: Category Handler, Notification

Handler, and Handler for User. Out of the these, the

Notification Handler class handles sets of different details

of the notifications sent to the user. In this class, there are

methods such as ADD_LINKS_ACTION, ADD_LINK_ACTION_DISPLAY,

and so on, which add and display URLs in the work item.

Figure 7.24 shows the handler classes and the methods for

class CL_SWN_NOTIF_WORKFLOW.

By default, through the standard process with the help of

Transaction SWNCONFIG steps that we did in previous

section, the inbox and URL link to execute the work item

URL link are added to the notification.

In some cases, there are requirements to customize this, for

example, when executing a work item and a specific

transaction or application must open. You can customize

these processes by copying the standard classes into a

custom class and then enhancing these methods

accordingly. Let’s see a custom scenario in which when

executing the work item, it needs to open an ABAP Web

Dynpro application. The steps are as follows:

1. Go to Transaction SE24, and create subclass

ZCL_SWN_NOTIF_WORKFLOW. The superclass of this subclass is

CL_SWN_NOTIF_WORKFLOW.

2. Redefine method ADD_LINK_ACTION_EXECUTE. This method is

used to add the hyperlink of the Web Dynpro

application, and, when executed, it will open the

application. In the method logic, you’ll get all the values

of the workflow container from the work item created by

the workflow based on the work item ID with the help of

FM SWW_WI_CONTAINER_READ. M_WI_HEADER is a global attribute

that holds all the work item–related header data. You

can see the relevant code in Listing 7.1.

 CALL FUNCTION 'SWW_WI_CONTAINER_READ'

 EXPORTING

 wi_id = m_wi_header-wi_id

 TABLES

 wi_container = i_cont

 EXCEPTIONS

 container_does_not_exist = 1

 read_failed = 2

 OTHERS = 3.

Listing 7.1 Method Logic of SWW_WI_CONTAINER_READ

Get the values of the element _WI_OBJECT_ID from the

container. This holds the business object repository

(BOR) and the GUID.

3. Create the ABAP Web Dynpro application URL. In this

example, lv_url = concatenate “static part of the URL”

and “WI_OBJECT_ID”. After that, the URL will look like the

following:

<schema>://<host>.<domain>.<extension>:

<port>/namespace>/webdynpro/<application

name>/’ObjectId’

4. Populate C_LINK (the changing parameter of method

ADD_LINK_ACTION_EXECUTE) with the URL you’ve constructed

and the hyperlink name that will appear in the mail, as

shown in Listing 7.2.

 wa_link-category = swn1_ref_type_tech. "('T')

 wa_link-id = swn1_ref_id_execute. "(EXECUTE_LINK_URL)

 wa_link-caption = 'Execute Work Item'(002).

 wa_link-url = lv_url.

 APPEND wa_link TO c_links.

 CLEAR wa_link.

Listing 7.2 Populate C_LINK

5. Open Transaction SWNCONFIG, and select the Category

node. Replace the Notification Handler class as

“ZCL_SWN_NOTIF_WORKFLOW”, which is created in the

previous step, as shown in Figure 7.24.

Figure 7.24 Handler Classes and the Methods of Class

CL_SWN_NOTIF_WORKFLOW

7.5 Additional Workflow Runtime

Jobs

There are some runtime jobs you need to schedule to

complete the extended notification emails delivery and

subsequent other items to complete:

Program SWN_SELSEN

Program SWN_SELSEN must be scheduled as a batch job

to send out emails via the extended notifications. The

frequency should be adjusted to the selection and

delivery schedules created via Customizing. Usually

program SWN_SELSEN is scheduled more frequently to

ensure that the selection and delivery schedules can be

served.

The notification process via program SWN_SELSEN

consists of two phases: selection and delivery. For each

phase, schedules must be created via Customizing:

selection schedule and delivery schedule. The actual

processing is done only if the corresponding schedule is

due.

If the No Time Check During Send checkbox is marked,

the program doesn’t check whether the delivery

schedules are due. This means all existing delivery

schedules are processed, and the emails are sent out.

Figure 7.25 shows the selection screen details of program

SWN_SELSEN.

Figure 7.25 Selection Screen of Program SWN_SELSEN

Program RSWNNOTIFDEL

When a work item disappears from the user’s inbox (e.g.,

work item is completed, canceled, forwarded to another

user, etc.), program SWN_SELSEN recognizes that. The

corresponding notification is set to status Logically

Deleted (L) in Transaction SWN_NOTIF. The physical

deletion is done by program RSWNNOTIFDEL. This

program must be scheduled periodically, for example,

once a day. Figure 7.26 shows the selection screen of

program RSWNNOTIFDEL.

Figure 7.26 Selection Screen of Program RSWNNOTIFDEL

7.6 Summary

Email notification is one of the key features of SAP Business

Workflow, and you’ve seen different types of notifications in

workflow in this chapter. We discussed the prerequisites to

make the email notification work such as setting up email

addresses and setting up SAPconnect. Then, we discussed in

detail about using program RSWUWFML2 to send work item

email notifications. All features of this program, along with

different selection screen parameters and controls, were

also covered. Next, we saw a better way to handle email

notifications by suing program SWNCONFIG. The

Customizing details were depicted with steps. You also saw

how to add work item URL links in email notifications and

several other runtime jobs required to complete all the

necessary items.

8 Workflow Administration,

Monitoring, and

Troubleshooting

This chapter introduces you to the different

transactions, tools, and features available for workflow

administration, monitoring, and troubleshooting. The

chapter will discuss each tool and transaction, explain

their features and use cases, and provide step-by-step

instructions for their use. You’ll learn to trace their

workflows in the system, monitor logs, perform

troubleshooting, and restart the workflow after errors

are resolved.

Workflow isn’t just about building some technical

components. It’s about integrating business process steps

and integrating human activity. So, you can’t work in a

reactive mode when users will create an incident if the

workflow isn’t working as expected. Rather, there needs to

be a constant monitoring of the processes and proactive

identification of the issues to make the workflow

implementation successful. The success of workflow

implementations heavily depends on the setup,

administration, monitoring, and troubleshooting. Workflow

deals with people. As an IT support team, you won’t be able

to always get direct and immediate input from end users

regarding what isn’t working from a process point of view.

You may see there is no incident created because the

system may work technically, but the process, screen, and

method of operation isn’t user friendly. By the time you get

this feedback directly from end users, there will already be

an impression that the workflow doesn’t work in the system.

It’s very difficult and takes time to change those opinions.

But if you the proper monitoring set up, you can find that

something is taking longer than expected to process, and

then you can proactively talk to the business, identify the

improvement area, and make it better for users.

We’ll discuss these aspects of workflow development in this

chapter. We’ll start with how to interpret the workflow log.

It’s very important to read workflow logs because they

contain all the runtime information to troubleshoot any

workflow. The challenge with workflow troubleshooting is

that it consists of a long process chain, so it’s sometimes

difficult to simulate the entire process chain, or it takes a

long time to replicate a similar issue in a lower environment.

The workflow log will help you troubleshoot any issue

quickly. We’ll discuss workflow administration and

maintenance activities required for regular maintenance of

workflows. We’ll provide a list of commonly used

transactions and reports that will help you monitor the

workflow system health and troubleshooting. We’ll provide

examples of some common technical errors and the

approach to troubleshoot those errors.

Then, we’ll discuss features and functions of the SAP user

inbox. This will help you think from an end user perspective

regarding what features should be enabled. We’ll discuss

the scenario when someone is out of the office and how

workflow processes can be delegated. We’ll end the chapter

with a workflow using the ArchiveLink feature. This is a very

common scenario in which the workflow process is based on

incoming documents.

8.1 Workflow Log

The execution details of the workflow runtime are stored in

the workflow log. Execution date/time details, user activity,

container variable, and object instance information is all

available in the workflow log. Workflow log is used to

troubleshoot all workflow application instance-related

issues. The most common way to troubleshoot is start

identifying the workflow by business object. You’ll get the

production incident with a business object (e.g., purchase

requisition), the key of that business object, and the issues.

You have to check the workflow log to find the root cause of

the issue.

There are five types of workflow log view available, as

follows:

User view

Classic user view

Technical view

Summary (HTML)

Classic technical view

All these views provide similar kinds of information with

some small differences. Normally, user views (see

Figure 8.1) don’t have links to container and task ID

information immediately available. We suggest using either

technical views or classic technical views when you’re going

through the workflow log, as we’ll discuss later in this

chapter. The main difference between technical and classic

technical view is that you can get technical information at

the bottom of the screen in the technical view (compare

Figure 8.6 showing the technical view with Figure 8.8

showing the classic technical view later in this chapter).

However, that will reduce the space to see all the workflow

steps shown at the top part of the screen. You can decide

which to use based on your own preference, but both will

provide the same information, and only the navigation will

be a little different. The user view provides the most

significant steps and better agent information.

You can switch between user view and technical view by

clicking the button or from menu path Goto • List with

Technical Details/ActiveX Version. We recommend

starting with the user view and then switching to the

technical view for technical information. You can change the

settings by choosing Goto • Personal Workflow Settings

from the menu path on the workflow log screen to change

the default view you’ll get when you open a log. You can

navigate to the workflow log from almost all workflow

troubleshooting and administration transactions. Look for

the workflow log icon. We’ll go through the details of

these three views and their navigation in this section.

Access to workflows is required to troubleshoot any issue.

There are ways to go directly to an error task, but we

suggest starting with the workflow log and navigating to the

error steps from there.

Run Transaction SWI6 (Workflows for Object) to find the

workflow instance or follow menu path SAP Easy Access •

Tools • ABAP Workbench • Development • SAP

Business Workflow • Runtime Tools • SWI6 –

Workflows for Object. All SAP Business Workflow

transactions are available under menu path SAP Easy

Access • Tools • ABAP Workbench • Development •

SAP Business Workflow.

Select the workflow you want to display the log, and click on

the workflow log button. You’ll get the key steps in the

overview of the workflow log. Figure 8.1 shows the

hierarchical view of the workflow steps.

Figure 8.1 User View of a Workflow Log: WF Chronicle

As you can see, the View: WF Chronicle tab shows the

completed key steps, their user assignment, and the

pending work items and corresponding agents.

If you click on the details button , you’ll find the details of

the step, such as when the work item is created, who has

executed this work item, whether any deadline is reached

for this work item, and so on. Sometimes, users may create

a ticket that they haven’t received any item for approval.

This log will help you get the history of the workflow and

people associated with it.

This view is very useful to analyze agents. This view

provides the information on selected, possible, and excluded

agents. Click on the Agent button to see the details of

the agent. Figure 8.2 shows the agent information of an

unprocessed work item. You can now click on the Agent

button to see who is the current processor of the work item.

Normally, you use this view to understand the process flow

of the workflow and different agents associated with it.

Figure 8.2 Agent View in the Workflow Log

You can click the graphical view button to see the flow of

the process steps in the graphical editor. The green colored

arrow will point to the position the workflow steps are

completed. Figure 8.3 shows the same workflow in the

graphical view.

Figure 8.3 Workflow Log in Graphical View

The right pane of the graphical view shows the entire view.

You can zoom in on any specific area to see it on the left

pane. This may be useful for a simple workflow as shown

here, but for complex workflows with loops, this view may

not be that useful.

The View: Workflow Agents tab in the user workflow log

view will show the activities of the agent involved in the

workflow. It will provide a summary for each agent involved.

If an agent received two work items during the lifecycle of

the workflow, then this view will show both the tasks

executed under one tree node, as shown in Figure 8.4.

Figure 8.4 Workflow Agent View

This view mainly provides the information regarding who

executed the work item and when.

The View: Workflow Objects tab will show the activity log

related to the business object. It mainly shows the events

triggered and the foreground steps executed by the end

user who is linked to the workflow object. It will show you a

subset of information that is available in the other two tabs.

Figure 8.5 shows the workflow object view in the workflow

log.

Figure 8.5 Workflow Object View in the Workflow Log

During any troubleshooting of the issue, you start from the

user view SWIG: WF Chronicle tab. This provides the

overview of the steps completed and the associated agents.

The next step will be to further deep dive to get technical

information about the workflow. There are two technical

views available: technical view and classical technical view.

Both provide similar information, so the choice comes down

to user preference.

Click the Technical Details button to navigate to the

technical view. Figure 8.6 and Figure 8.7 show the same

workflow log in the technical view. You can always come

back to the user view by clicking the ActiveX version log

button. As you can see, this view will show the execution

sequence in a tree structure. This will help you understand

how each step of the workflow got executed.

Figure 8.6 Technical Workflow Log View

Figure 8.7 Technical Workflow Log: Container View

This view of the workflow provides all the information in a

single place. The top part of the screen shows the workflow

steps in a tree view, and the bottom part of the screen

shows the technical details of each step. The technical

details are shown in different tabs. You can click each step

of the workflow to see the details of that step in the

following tabs:

Details

This tab shows the technical and execution details of the

workflow, such as task or workflow number, when it was

created, current status, and so on.

Step History

This tab shows each activity performed under this step. If

any background function module went into error during

the execution, you’ll find those details in this step. You

can select each of the actions and then click on Technical

Details to see the details of the error message, including

the message area, message number, and so on. This tab

will be very useful to troubleshoot any background errors

that occurred during execution.

Deadlines

This tab shows all the deadline-related information, such

as what deadlines are set up for the step and which one is

missed.

Task Description

This tab provides the task description that users will see

in their inbox.

Message

This tab captures the last message triggered. You can find

the same information in the Step History tab.

Container

This tab provides the value of each container.

You won’t get the agents in this view directly. To get the

agents view, select the relevant task, and choose Utilities •

Agent. You can see all the error messages from menu path

Utilities • All Error.

You can also navigate to the administrative task for the work

item from this view. Select the relevant step and choose

Goto • Workitem, or right-click on the step, and select

Display Workitem. It will take you to work item

administration transaction (Transaction SWIA), where you

can forward, execute, or replace the work item as an

administrator.

You can also navigate to the technical definition of the

workflow or task. Right-click on the relevant item, and click

on Display Task. There are other options to navigate to

different information. Here, we’ve only discussed the ones

that are more useful during project work, but you should

explore all the options available.

Another popular view, the classic technical view, is similar

to the technical view with some navigational difference.

Figure 8.8 shows the classic technical view of the same

workflow.

Figure 8.8 Workflow Log: Classic Technical View

The look and feel of the technical view and the classic

technical view are different. The key noticeable differences

from usability are listed in Table 8.1.

Element Technical View Classic

Technical

View

Element Technical View Classic

Technical

View

Agent You have to get the agent

information (agent/possible

agent/excluded agent) from

navigating from menu path.

You can get

this view by

clicking a

button on the

corresponding

task line item.

Execution

view

This view shows the workflow

steps in a tree structure with

a logical execution block. For

example, if a step is executed

with a LOOP, the step will be

displayed under the LOOP

block. This representation is

not available in classic

technical view. It’s easier to

compare the flow of workflow

execution with the Workflow

Builder.

This view

shows all the

steps for task

execution, but

they aren’t

like the

Workflow

Builder

sequence of

steps.

All step

information

in a single

view

Because half of the screen

will have step details in tabs,

you have to scroll to navigate

if you have too many steps.

You can get

more steps in

a single view.

Table 8.1 Key Differences in Technical View and Classic Technical View of

Workflow Logs

All the features mentioned for technical views are also

available in classic technical views. Which to use is up to the

user.

8.2 Workflow Administration

The workflow administrator plays a key role in establishing

the success of any workflow implementation. The workflow

administrator needs both the technical knowledge and the

business process knowledge to support the workflow.

Workflow administrators should understand the workflow

basics, know the functionality of the workflow being

supported, and be familiar with the error diagnosis and

restarting transactions.

Because a production environment runs all day, it’s required

to have more than one workflow administrator in a project

to support round the clock. Normally, workflows run

smoothly if they are rightly designed, so there may not be

enough workflow administrator work to fully occupy a single

person. In that case, other duties should be assigned to the

workflow administrator. There are a few options for workflow

administration structures. Because workflows may handle a

few important processes such as invoice, appraisal, and so

on, some errors may need to be resolved very quickly. You

should consider the following when structuring a workflow

administration team:

It’s helpful to have a centralized team with a mix of

technical and application owners. The technical team is

also responsible for support of other systems.

You can also consider including workflow administrators

who are also workflow developers.

The size of the team will depend on the number of

workflows running in the system. It also depends on the

number of workflow instances created in a day. The larger

the volume, the more support is required.

The more application areas you have using the workflow,

the more business contact you need. The end user should

be trained properly to minimize the confusion regarding

the system functionality.

The businessperson should be the first point of contact for

any process issue. Then, the businessperson will contact

the workflow administrator to investigate in more details.

A document should be prepared with the possible errors

and the solutions to the problem. Any new kind of error

should be updated in this document.

The workflow administrator should consult with the

business owner and the workflow developer before

restarting any error workflow.

Make sure a workflow developer is available to help solve

the problem after any new workflow is activated in

production.

The workflow administrator should keep handy all the

contact numbers of business owner and workflow

developer.

Because workflows may handle a few important processes

such as invoice, appraisal, and so on, some errors may

need to be resolved very quickly.

There are several cases where the workflow is working per

the expected procedure. There may be questions from

end users on the current status or how to provide this

kind of information. You can enable your helpdesk to

provide this information. In general, workflow logs and

transactions are too technical, making it difficult for end

users. You can consider building custom reports to provide

basic information on the workflow current status, to whom

it’s assigned, and so on.

As a workflow administrator, you have to focus on a

number of areas to run the workflow engine smoothly.

Let’s start by looking at workflow error handling being

built into the workflow design:

Anticipate the type of error that may arise during

execution. For example, you can set it up to handle

temporary errors in the task method so they can be

reprocessed. A locking error can be set up so that the

system automatically reprocesses the temporary error

three times (as default workflow settings). Therefore,

these errors can be reprocessed automatically without

workflow administrator intervention.

Ensure the agent determination method doesn’t cause

an error. Handle the scenario with the workflow

administrator as an agent where the system can’t

determine the agent for a step.

Have an escalation matrix defined from the business

side to handle the exception scenario. You can consider

certain scenarios to be handled by someone from the

business. For example, if an agent isn’t determined,

then send the work item to some central person from

the business who can forward it to the responsible

person, and the workflow can continue from there.

Another important thing to focus on is workflow

documentation, as follows:

Four kinds of documentation are helpful for any workflow:

the user training document, business process document,

technical details document, and error handling. A detailed

process flow diagram should be included in either the

business process document or technical details document.

User training documentation will guide the user to use the

workflow properly by showing each step of the workflow

with a proper screenshot. A document detailing SAP inbox

set up and the SAP inbox functionality will be helpful to

the end user and should include the steps to set up

substitution and automatic forwarding. Other inbox

functionalities such as reserving a work item, replacing a

work item, and finding the work item depending on the

workflow task, may be included in the document.

The business process document will outline the detailed

business process and should include a flow diagram. Any

application configuration should be included. For example,

vendor invoice workflows (Transaction FB50) need

application configuration. The business process document

should include this configuration with the volume, any

authorization requirements, and any special error-

handling requirements. The test conditions need to be

tested, including both positive and negative conditions.

The test conditions will help the developer test the object

properly by getting a better view.

The development documentation should include the

workflow number, the triggering point of the workflow,

and the business object used. If it’s a custom business

object, then briefly describe the functionality of the

methods. You should also provide detailed logic of how

work item processing agents are determined in the agent

determination rule and if any responsibilities are

maintained. Be sure to include any screen names, iViews,

and Web Dynpro screens used.

Finally, let’s look at the workflow administration transactions

and reports. There are several workflow administration

transactions that are useful for day-to-day maintenance

activities and troubleshooting issues. These transactions are

used to determine the workflow items that need to be

analyzed. Once the workflow item is identified, then

navigate to the log for further analysis. You also have to

monitor the workflow engine running along with your SAP

inbox. We’ll describe some key transactions that should be

monitored in regular frequency. You can also think of setting

up a bot to handle the allocation of these errors based on

the business process area.

Before we jump into the key transactions, let’s first discuss

the option to display the task and log that they each

contain. The key activities that you can perform are as

follows:

Execute the task

You’ll have the authorization to execute the task, but it’s

not recommended for a productive environment. Only the

business user responsible should execute the task. There

can be audit violations if you execute any work item.

Execute agent rule

The system will re-execute the agent determination rules

assigned to the task. The task will be assigned to the

newly determined agent. If the agent isn’t determined,

then it will stay in the current state. You can also perform

this task using Transaction SWI1_RULE. Reexecuting the

agent rule is not only done for error cases. If new possible

agents are added and the work item is reserved by any

user, you can set the work item status back to READY as

an administrator and re-execute the agent rule so that

new possible agents also get it in their inbox. You can also

re-evaluate the agent by using a special function of the

workflow header event Re-Evaluate Agents of Active

Work Items.

Forward work item

If there is no way to redetermine the agent for the rule,

then you can forward the work item to the appropriate

user. When you’re developing a workflow, you have to

think of these scenarios, for example, if the agent can’t be

determined based on rules and administrator forwards it

to someone, how will the next level of approver be set?

Will it be based on the person approved in the last step,

or will it be based on the original line of command?

Let’s now look at the key transactions:

Workflow reorganization

You’ll find the workflow reorganization-related

transactions in Tools • Business Workflow •

Development • Administration • Workflow Runtime

• Reorganization. You should think of the archiving

workflow log. There are options for both archiving and

deleting the workflow log. The workflow log can grow and

take considerable disk space if it’s used heavily in the

organization. You should archive it in the production

environment and consider deleting it in nonproduction

environments.

Application log

This can be found via Tools • Business Workflow •

Development • Administration • Workflow Runtime-

Application Log • SWF_APPL_DISPLAY. This is similar

to the application log display (Transaction SLG3). This

filters the same transaction with object WF.

Work items without agents

Choose Tools • Business Workflow • Development •

Administration • Workflow Runtime • Work Items

without Agents (Transaction SWI2_ADM1). This report is

used to determine the work items that are generated

without any agent assignment. The selection screen of

this report will provide you the options to select based on

the time frame and tasks. The output of the report will

look like Figure 8.9.

Figure 8.9 Work Items without Agents

Diagnosis of workflows with errors

Choose Tools • Business Workflow • Development •

Administration • Workflow Runtime • Diagnosis of

Workflows with Errors (Transaction SWI2_DIAG). This

report (see Figure 8.10) will show all the workflows in

error.

Figure 8.10 Diagnosis of Workflows with Errors

As a proactive measure, you can check these workflows

regularly and take corrective action before any ticket is

even logged. You can restart the workflow from the error

step after taking the corrective action for the root cause.

The output of this report is shown as well. A similar

function can be executed from Transaction SWPR

(Workflow Restart after Error).

Continue workflow after system crash

Choose Tools • Business Workflow • Development •

Administration • Workflow Runtime • Continue

Workflow after System Crash (Transaction SWPC). For

any system crash, execute this transaction. Check if any

workflow item is stuck in this queue. You can restart the

workflow from here.

Workflow for objects

Choose Tools • ABAP Workbench • Development •

SAP Business Workflow • Runtime Tools • SWI6 –

Workflows for Object (Transaction SWI6). The preceding

transactions are used as a proactive measure to check

system-wide issues. But when you get productive

incidents, you’ll get a reference to a particular workflow

object, and you have to troubleshoot for that object. Use

Transaction SWI6 to find the workflow objects that are

having the issue and take corrective action (refer to

Section 8.2 on how to use this transaction). Get the

workflow instance using the object and key. Then go to

the workflow log, get all the technical details, and analyze

the issue. You can navigate to the work item display

transaction or use the technical details for any of the

other administrator transaction to solve the problem.

You can find more transactions in the SAP Easy Access

menu. But these transactions should be enough for you to

troubleshoot any issue or maintain the system.

8.3 Workflow Error Diagnosis and

Resolution

Because workflows affect the business process, the business

owner should be consulted about any error before making a

decision. After any workflow error, the administrator should

analyze the following:

What is the business impact?

How long will it take to fix the problem?

Is it possible to restart the process from the error point, or

does the process need to be started from the beginning?

Who should be notified of the failure?

Does the error have any downstream effect?

If the failure affects the customer directly, then notify the

customer.

If there is any manual workaround before placing the

actual solution, it takes time to move the code fix to the

production environment in any validated system. So, the

workflow administrator needs to find some quick

workaround.

The error should be documented so that it can be

prevented from occurring next time.

Don’t delete any workflows from the system. You can set

the status to Logically Deleted for any error workflow.

After analyzing the error, if the workflow can’t be

restarted, then set the status to Logically Deleted.

Update the workflow description with the reason for the

activity. This will help during the system audit. Create a

document with the list of workflows logically deleted and

include a detailed description of the error and the

resolution for that error.

If workflow administrator manually executes a work item,

then a document should be attached to the work item

with the reason for the activity. The same should be done

for any administrative execution going forward.

The workflow administrator should keep a daily report of

the number of workflows started and the errors. This

helps a business understand the health of the workflow

system and makes them confident in the workflow.

Handling a workflow in the productive environment and

nonproductive environment differs quite a bit. In a

nonproductive environment, when you get an error, you

analyze the root cause, fix the error, and create a new

workflow to test the fix. But in production, you create a

new instance of the workflow that will be the last solution.

The workflow should be built in such a way that it can be

restarted from the step where it’s stuck.

Often, incidents are created with error messages without

providing the business object details. Create an

instruction guide for the support center regarding the

basic minimum information needed for the workflow from

the end user. This helps to improve the turnaround time

for production incident resolution.

We’ll now discuss the areas where you’ll mostly get errors

and how to handle those errors:

Agent assignment error

This is the most common error in the system. You can use

any of the workflow log analysis transactions to display

the error. Refer to Section 8.1 on how to view the

workflow log. You get the agent assignment–related error

message, as shown in Figure 8.11.

You’ll find the details of the agent rule in the error

message if the rule is assigned for the agent

determination rule. If the error is due to programming,

any backend configuration, or system data, then you fix

that and reexecute the rule using Transaction SWI2_ADM1.

Refer to Section 8.2 for more details on the administrator

transactions to handle the error workflow. It’s very

important how you design your workflow rules. Beginners

commonly make the mistake of setting the task attribute

as a general task. If a task attribute is set as a general

task and the agent determination rule doesn’t come up

with any agent or neither raised any error, then the work

item goes to all users in SAP. So, you have to determine

the design strategy when choosing the work item

attribute. On the other hand, if you don’t set it as a

general task and add possible agents, then a lot of

maintenance may be required for possible agents if

they’re not set up with some generic role or

organizational units. If you decide to go with the general

task attribute, you should raise an exception from the rule

so that the work item doesn’t go to all users.

If the rule can’t be regenerated successfully after an error

due to some runtime generated data, you have to

logically delete the workflow and trigger a new one with

the same business key. You must document that in the

workflow and inform all the users involved in that instance

of the workflow.

Figure 8.11 Agent Determination Error

Error in the business object methods

There can be application logic errors within the business

object method ABAP code. The workflow log will show the

error, and you can analyze from that step. You have to go

to Transaction SWO1 to display the business object and

corresponding method. You can single-test the method

and debug the method code to find the error in the

application logic ABAP code. If you’re using ABAP classes

and methods, then you have to check the ABAP code in

the class and fix the application logic.

Container and binding error

Normally, a static syntax check is executed when you

activate the workflow. In some cases, for dynamic and

complex binding, you may get a runtime error. Another

error scenario is when a mandatory parameter of a

container isn’t filled. You won’t be able to restart these

kinds of workflows unless the container element is

updated or binding is changed. It’s normally not

recommended to change any container data manually in

a productive environment. You can decide the best way to

handle these errors based on your specific scenario.

Buffering problems

Sometimes you’ll find workflow is picking up incorrect

agents even when the workflow is set up correctly. This

happens due to the buffer. You’ll mostly encounter this

issue in nonproductive environments where you make

frequent changes. Workflow reads the majority of the

organization management and agent-related information

from the buffer for better performance. Because it reads

from the buffer, you may find the changed organization

data point isn’t considered by the workflow during agent

determination. You have to run Transaction SWU_OBUF to

refresh the buffer. You’ll find the workflow starts running

perfectly after the buffer refresh.

Transaction SWU_OBUF gets executed automatically in the

system every night at midnight, so you may find

something that wasn’t working yesterday is running fine

the next morning. This is also known as the Cinderella

Effect. Normally, you won’t find this issue in productive

environments because organization management data

doesn’t change that frequently in production. Run

Transaction SWU_OBUF after any workflow changes move

to production. In a nonproductive environment, run it

whenever you’re making any workflow changes. You can

also refresh the organization environment using

Transaction SWUS. It’s useful in the development/test

environment where you can refresh the buffer for the

current user ID.

Event linkage error

You may find suddenly workflows aren’t starting in the

system. There are two ways workflows are triggered:

With the triggering event

Directly started from an application, for example, by

calling function module SAP_WAPI_START_WORKFLOW

It’s recommended to start workflows only via the

triggering event to provide better capability to

troubleshoot and retrigger the workflow.

If the workflow isn’t getting triggered and is supposed to

be triggered by an event, follow these steps to

troubleshoot the issue:

Check the event linkage between the event and the

workflow. You can find it in the Workflow Builder

(Transaction PFTC on the Check Triggering Event tab

or Transaction SWDD via Basic Data • Event) or in the

event linkage maintenance transactions (Transaction

SWE2 or Transaction SWETYPV).

Check if the event linkage is active. You can find it out

in the workflow transaction (PFTC or SWDD) or in the

event linkage maintenance transaction (SWE2 or

SWETYPV).

Check if event trace is on (Transaction SWEL). If the

trace is on, then check the event trance log

(Transaction SWELS) if the event is triggered.

Check if there is an event check function module

attached and if the check function module will allow you

to trigger the event for the scenario you’re

troubleshooting.

If the event queue is activated, check the event queue

regarding the status of event processing. An event can

be processed using the queue or a direct transactional

Remote Function Call (tRFC). It’s recommended to use

the event queue for better performance management

and tracking of the event. See Section 8.7 for details on

how to administrate the event queue.

Because events are triggered using tRFC, check the

tRFC log if the event is triggered (Transaction SWU2).

Event linkage has a setting for system behavior if any

event error happens. If this is set to deactivate linkage,

then the event linkage will be deactivated after any

event trigger error. We recommend not set tingthis

attribute as deactivate linkage. Rather, send the error

to the event queue for further processing.

Check if the workflow start condition is met. You can

find the start condition in Transaction SWB_COND or in

the workflow header basic data on the Start Event tab.

Check if there is a binding error between the event

container and workflow container.

You can retrigger the event after fixing the root cause of

the issue. Execute Transaction SWUE to trigger any event.

Be careful about the parameters needed to trigger the

event. The event initiator becomes the workflow initiator.

The workflow’s subsequent algorithms may be based on

the workflow initiator, so you also need to take care of the

workflow initiator so that it reflects the actual business

scenario.

If there is an event container and workflow binding build

error, you won’t be able to trigger the workflow without

fixing the binding. In a productive scenario, it may take

time to fix this issue in development and move to

production using the standard change management

process. You may not have time to wait to get the fix

before starting the workflow. In that scenario, you can

directly start the workflow using Transaction SWUS (Test

Workflow). Be careful about populating the container

element properly, including the workflow initiator.

8.4 Workflow Inbox and Features

Workflows integrate business processes and integrate

people’s actions. The success of a workflow depends on its

usability and flexibility to deal with people’s actions. When

you develop a workflow, you also have to keep the design

thinking aspect along with the technology. Workflows are

executed by people from the workflow inbox. It’s like an

email inbox in that you get your actionable workflow items

there. In classical workflows, the SAP GUI inbox is the

primary workflow inbox where you’ll get your work item to

execute. There are different options for the SAP inbox. We’ll

highlight the most commonly used and relevant ones here:

SAP GUI-based workflow inbox

If the user is using SAP GUI for day-to-day activity, then

Business Workplace is the preferable inbox option. This

can be accessed from the SAP Easy Access menu or from

Transaction SBWP. Business Workplace will keep both the

actionable work item and the email notification triggered

based on the work item. All of the classical work item

features are available here. We’ll be discussing this in

details in this chapter.

SAP inbox

This is the browser-based SAP inbox. This was previously

known as the universal worklist. All kinds of work items

are merged into one common inbox. The details of this

will be discussed in Chapter 20.

Additional options

There are other options for accessing work items such as

SAP Fiori apps for approval, and Microsoft Outlook and

Lotus Notes for SAP integration. However, these are

complex integrations and not that popular.

When you’re working on a workflow, you have to understand

how the work item will be consumed by end users in the

workflow inbox. You should explore the Business Workplace

features before you develop any workflow. Keep the

following key points regarding usability in mind:

What information will be visible in the workflow inbox?

Work item header and item text should be captured in

such a way that the key information is available

immediately when the user is opening the workplace.

A user may get different work items, so is there any way

to group them? This will be very useful for user groups

such as accounts payable clerks who may get hundreds of

work items from different business processes. The team

may be grouped by organizational unit, meaning there

may be a requirement to group the workflow items rather

than having all in one view. Explore the options for how

the work items can be grouped for better usability.

How will the user know the priority items?

How will the user know when the user has to complete the

work items?

We’ll discuss the user aspect of Business Workplace (see

Figure 8.12), which is where end users get their work items.

We’ll also cover the different work items that are visible in

Business Workplace to help you design your work items

while keeping Business Workplace in mind.

Business Workplace has email capabilities along with

workflow processing, but it’s normally not used for email.

It’s mostly used for workflow processing.

We’ll now discuss what information appears in which part of

the inbox. Figure 8.13 divides the entire workplace into six

main components.

Figure 8.12 Business Workplace

Figure 8.13 Business Workplace with Components

The main components are described in the following:

 Inbox

This section will contain both workflow work items and

SAP documents (similar to email), as follows:

1

The first two nodes, Unread Documents and

Documents, will contain any SAP document mail

sent to the user. It will also contain other SAP

documents such as short dumps.

The Workflow inbox will contain all the work items

the user needs to execute. These work items can be

grouped by task number, content, content type,

and sort key, as described in Table 8.2.

Work

Item

Group

Work Item Group Description and

Purpose

Grouped

according

to task

This section will group the work items

according to the task number. This is

very useful for business function groups

of people where you’ll have lots of work

item to process. The task description

will appear in each group, so it’s

important to have a meaningful task

description when you’re developing the

workflow. You should also consider this

usability criteria when reusing a task or

creating a new task. For example, an

accounts payable clerk needs to

process financial accounting invoices

and invoices that aren’t from financial

accounting. The work can be

segregated by task.

Work

Item

Group

Work Item Group Description and

Purpose

Grouped

according

to

content

This will group the work items by

workflow business object key. Normally,

this isn’t that useful because in general

one user will have one work item for a

specific workflow instance.

Grouped

according

to

content

type

This will group the work items by

workflow business objects. For

example, the material master (BUS1001)

workflow will be grouped into one.

Work

Item

Group

Work Item Group Description and

Purpose

Grouped

according

to sort

key

Earlier groupings are static groupings

defined during the build of the

workflow. Grouped according to sort

key provides the options to group

according to the specific content of the

workflow. There are two standard work

item containers: _WI_Object_ID and

_WI_Group_ID. The _WI_Object_ID container

is automatically populated with the

business object instance reference. This

is used for Grouped by content and

Grouped by content type.

_WI_Group_ID can be populated using

container binding. This is used in

Grouped according to sort key. For

example, if you’re have a global

customer approval process and want to

group by regional business unit (e.g.,

EU, NA, APAC, etc.), you can populate

_WI_Group_ID with the region for better

handling of the work items.

Table 8.2 Work Item Grouping in Business Workplace

Normally, the grouped by feature is needed for

people managing group functions where a high

volume of workflow items are generated every day.

Always talk to the business and understand how the

work is distributed when you’re developing a

workflow. This will help you understand what kind of

work item grouping will be helpful.

You can get the work items where deadlines are

passed in the overdue entries bucket.

 Outbox

This section shows the workflows started, work items

executed, and work items forwarded by the user.

 Work items

Work items will be shown within this window. You can

change the layout by adding/removing the list of

columns available. You can also dynamically define

columns based on runtime data content. You can

perform standard SAP List Viewer (ALV) functions such

as filter, sort, and group on these columns. Work item

title is one of the key pieces of information users get

here, along with the kind of task to execute. When

you’re developing a workflow, make sure to enter a

meaningful sort text for the workflow title. It’s also

recommended to enter the organizational unit (e.g.,

company code, sales organization, etc.) related

information in the workflow title. Users sometimes use

filter to select specific work items related to an

organizational unit. When you’re developing a

workflow, always talk to the key business users to

finalize the work item text where needed.

2

3

 Work item text

When you select a work item, the work item

description is shown in this area. The work item

description comes from the task description. The two

main objectives should be fulfilled when you create

the work item text for the user. It should briefly state

what action is to be taken and include key information

about the business object that will help the user take

the action. The work item text is also sent as an email

to the user if email replication is activated. So you can

also provide the link of the SAP web login portal to

ease the login into the system.

Normally, the user gets familiar with the activity steps

after a couple of approvals, so text related to the

action to be performed can be put at the end of the

work item text. The beginning of the work item text

can be populated with the key business information.

Work item header text is also very important from a

usability perspective. People sort the work items

based on who has a high number of items to be

processed. So you can think of placing the

organizational unit–related information first in the

work item header text. Always work with the end user

to come up with the work item text.

4

 Attachment

Any attachments and business object instances are

available in this section. When you click the business

object, it will execute the default method that is

normally displayed and display the business object.

You can also attach the attachments or view the

already-attached documents. Attachments move to

the next work items by default, so if the user wants to

pass on any ad hoc information to the next level, then

an attachment can be a good option.

 Work item toolbar

This section contains the icons representing the

different actions users can take on the workflow,

which are detailed in Table 8.3.

Action Description

Refresh This will refresh the inbox. Normally,

Business Workplace automatically gets

refreshed in a few seconds. But this

function can be used to manually refresh it.

If you’ve executed a work item and it has a

terminating event to complete the work

item, then it may take some time to get the

work item out of your inbox. There may be

some delay to process the terminating

event.

Execute This will execute the method associated

with the task. Normally, it will open up the

screen where the user can take an action.

5

6

Action Description

Display This will display the details of the work

item. You can view the work item texts and

do standard work item operation activities

such as forward, resubmit, change priority,

and so on.

Reserve If a work item is sent to multiple users, then

any of the users can reserve the item by

using this function. Then, the work item will

disappear from the other recipient’s inbox.

If any user opens the work item, it’s

automatically reserved by that user.

Replace This function releases the work item to all

possible recipients. With Replace, the work

item will be visible to all selected recipients

in case there are multiple recipients for the

work item.

Action Description

Forward Current recipients can forward the work

item to other users. This function will

depend on the task attribute. Possible

options based on task attributes are as

follows:

General Task: This work item can be

forwarded to all users.

General Forwarding Allowed: This

work item can be forwarded to all users.

General Forwarding Not Allowed: This

work item can only be forwarded to

possible agents of the task.

Forwarding Not Allowed: This work

item can’t be forwarded.

It’s recommended not to allow forwarding

to all users. A work item contains business

information, so it should be limited to the

users responsible.

Action Description

Resubmit You can resubmit a work item to a future

date. Once you resubmit, the work item

won’t be visible in your inbox but will

appear in your Resubmission folder. You

have to provide a date when you’re

resubmitting. The work item will again

appear in your inbox after that date. You

won’t be able to execute the work item

when it’s in the Resubmission folder. You

have to end resubmission if you want to

process it before the resubmission date.

This function is similar to parking a

document. If you have to park a document

to get more information, then you can

resubmit and keep your working inbox

clean. You can document what information

you’re waiting for in the attachment to

maintain the history of approval.

Log Users can check the workflow log as

mentioned in Section 8.2. The workflow log

is little bit complex for an end user, so

normally it’s not used by the end user. A

custom solution needs to be built if there is

a requirement to provide visibility of the

workflow progress to end users.

Action Description

Manage

Attachment

Users can view existing attached

documents against the work item or create

new attachments. You can upload any

document or use the SAP editor to

document any information. This is an

effective way to pass the information to the

next level or document the observation.

Action Description

Additional

Function

There are a few additional functions that

can be performed here:

Set the work items as Completed. Some

tasks need a user confirmation to

complete them. In that case, a popup will

appear to the user to confirm if the

activity is completed. The work item will

go out of the user’s inbox after the

confirmation only. You can set the activity

to Completed here.

Users can reject the execution of the

workflow. This option is only available if

the processing rejectable property is

selected for the relevant task. This isn’t

considered as an approval rejection, so

it’s not normally used in workflows.

The work item priority is set as 5 by

default. You can change the priority here.

The highest priority will have a different

colored line, which helps users prioritize

what to complete.

Table 8.3 Commonly Used Work Item Toolbar Buttons and Their Functionality

8.5 Substitution and Automatic

Forwarding

Business transactions may get stuck if a user is out of the

office and can’t take action on the work items. There can be

four scenarios: (1) A user left the organization, and there are

unprocessed work items in the user’s inbox. (2) A user

leaves for a planned vacation, and someone temporarily

processes the work items in the user’s inbox to keep the

business running. (3) Someone fell sick, which is unplanned,

and an urgent work item needs to be processed

immediately. (4) For a senior manager, the secretary wants

to keep a view of work items coming up in their inbox to be

able to inform the manager to take required actions. If a

work item isn’t actioned during an employee’s long

absence, it can impact business operations such as unpaid

bills resulting in penalties, missing out on discounts,

employee incurring late payment fees on his credit card,

and more. SAP workflow has a robust mechanism called

substitution that will enable a work item to be processed by

someone’s deputy in absence of the main user. This

substitution can be activated by the user or by an

administrator.

In the following sections, we’ll walk through substitutions in

both SAP GUI and in SAP Fiori.

8.5.1 Substitutions in SAP GUI

Substitutions can be done in two ways, as follows:

Personal substitution

Personal substitution happens at the SAP user ID level. All

work items the user has will be available for the substitute

to execute. When you do personal substitution, it updates

table HRUS_D2. Personal substitutions are normally used for

temporary out of office situations when the substitute can

execute the work item in the absence of the email user.

Position substitution

When a user opts for position substitution, an A210

relationship is created between the current user’s position

and the substitute. Position-to-position delegation is

performed by the A210 relationship in the HR master.

Normally, this relationship is created by the business who

maintains the HR master. This isn’t done by the IT support

team generally. Transaction PO13 is used here. The

position substitute can be created with a position, user, or

personnel number. The work items assigned to the user’s

position will be available for the substitute. If any work

item agent is determined by user ID or other position,

then that work item won’t be available with the

substitute. Normally, this kind of substitute is used if the

current user is changing his job role, and there will be a

new person assigned to his old position. This substitution

can be useful during the transition period.

If the user forgot to set up his substitution and went on

leave, the workflow administrator can also set up the

substitute. Workflow administrators can set up the

substitute on behalf of another user using Transaction

RMPS_SET_SUBSTITUTE.

If a user has resigned, then it’s recommended to set up the

substitute before his last working day. If it’s not done and

the user has work items in his inbox when he left the

organization, the workflow administrator needs to reassign

using the administrator report work items without agent

transaction.

Let’s take the most common scenario: a user going on

vacation. The user wants to substitute for his work items

(those already in his inbox and future ones). The user can

set up the substitution from SAP inbox. Go to SAP inbox

(Transaction SBWP). Then, navigate from menu path

Settings • Workflow Settings • Maintain Substitute.

You’ll see the personal substitution screen in Figure 8.14.

Figure 8.14 Personal Substitutes Creation Screen

Keep your cursor on the username, and click on the Create

Substitute button . A search popup will appear where

you can search for the user ID you want to substitute. Once

you’ve selected the substitute, the system will provide you

the option to maintain the duration of the substitute and

activate the substitution. Figure 8.15 shows the details the

user can maintain for the substitution.

Figure 8.15 Substitute Detail Screen

The maintainable details are described here:

Validity

This will determine when the substitute will be able to

access the main user work items.

Profile

This will control what kind of work items will be available

to substitute. We’ll discuss this in detail a little later.

Substitution active

When this is checked, the substitute will get the work

items immediately in their inbox. This is known as active

substitution.

For the substitute, it’s important to know which work items

he has received as a result of substitution and which ones

the user is the original approver for. In the workflow inbox,

the user needs to customize the layout and bring the

Substitute for column with the visible layout. This column

will show the name of the original owner of the work item.

But once the substitute executes any work item, he

becomes the owner of that work item. The Substitute for

field will be cleared out from that particular work item.

When the substitute executes a work item (without even

completing it), the work item will be reserved by the

substitute. It will disappear from the main user’s inbox. Let’s

say the main user has returned, and the substitute wants

the in-process work items of the main user to go back to the

main user’s inbox. In that case, the substitute should

replace the reserved work items.

Once the main user is back, he should end the substitution

either by delimiting the substitution or deleting the

substitution. You’ll find the Delimit Substitution and

Delete Substitution buttons in the Maintain

Substitution screen.

Deactivation of the substation isn’t enough to end the

substation. If you deactivate the substitution, the substitute

won’t get the work items as default as he was getting for

active substitution. But he can adopt the substitution and

get the work items, which is known as passive substitution.

For example, a senior manager wants to keep his assistant

as his backup. His assistant will check his workflow inbox

once a week and also process any work item on an ad hoc

basis per the senior manager’s instruction. This can be done

using passive substitution.

Passive substitution can be activated similar to active

substitutions. The only difference is that you don’t have to

activate the substitution (the Active substitution

checkbox remain unchecked). Once the substitution is

created, the substitute can adopt the substitution anytime

during the validity of the substitution. When the substitute

wants to see the main user’s work item, he can follow the

SAP inbox menu path Settings • Workflow Settings •

Adopt Substitution. Then, the original user work items will

be visible in his inbox. He can switch back to his own work

item view by ending the substitution view Settings •

Workflow Settings • End Substitution. This way, the

substitute can switch back and forth to see the original

user’s work item in his inbox.

To see the adopted work item view, a configuration is

needed. Enable this function in the default workflow for

personal settings. Go to Transaction SPRO configuration, and

choose SAP NetWeaver • Application Server •

Business Management • SAP Business Workflow •

Basic Settings (Workflow Systems) • Change

Presettings for Personal Workflow Settings. Select the

Also display work items of adopted substitutions

checkbox.

Substitution works at one level only. Let’s say user A

substitutes for User B. User B substitutes for User C. In this

scenario, user C won’t get the work items of user A.

Substitutes need to be directed to the main user.

Another business scenario is very common where the user

wants to do work item–specific substitutions. A user will

have work items related to different business objects, such

as HR, procurement, financial objects, or whatever. The user

may want to substitute his manager for HR-related work

items, someone from the procurement department for

procurement-related items, and someone else for finance

work items. A person may perform different roles in the

organization, so he may need work item–specific multiple

substitutions. This is achieved through a substitution profile.

Each task has an attribute for classification. This task

classification needs to be linked to substitution profiles. A

user can substitute different people for each substitution

profile. The steps for this are as follows:

1. Create a classification of tasks. During workflow design,

you have to come up with how all the workflows will be

classified. It’s recommended to classify how each

workflow will be used in the system. Each task should

not have a different classification. Classification can be

based on business object or business process area or

subarea. You can define a classification at a very high

level such as process module (e.g., finance, HR,

procurement) or at the business object level (e.g.,

purchase order, invoice, leave of absence, etc.). The

number of classifications should be manageable.

To define the classifications, go to SPRO • SAP

NetWeaver • Application Server • Business

Management • SAP Business Workflow • Basic

Settings • Maintain Task Classes. Make sure the

classifications have meaningful text. Figure 8.16 shows

an example of task classifications (note the INVOICE

classification has been create).

Figure 8.16 Classification of Tasks

2. Assign the task classification in the dialog task attribute.

You can assign the task classification from the workflow

step screen (see Figure 8.17) or from the task

maintenance screen (see Figure 8.18).

3. Click the agent assignment task button in Figure 8.17

or choose Additional Data • Classification •

Create/Change from the menu path shown in

Figure 8.18. You’ll get the screen shown in Figure 8.19.

Figure 8.17 Maintain Task Classification in the Task Attribute

Maintenance Screen

Figure 8.18 Create Classification from the Task Maintenance Screen

4. You have to select the classification value (e.g., Invoice)

in the Classification field, as shown in Figure 8.19.

Figure 8.19 Maintenance of Task Classification

5. Create a substitution profile. You can create one

substitution profile for one classification, or you can

group multiple classifications into one group. To create a

substitution profile, go to SPRO • SAP NetWeaver •

Application Server • Business Management • SAP

Business Workflow • Basic Settings • Substitute

Profile • Define Substitute Profile. Create a new

entry, and enter the name of the substitution profile and

description of the profile. Figure 8.20 shows the

substitute profiles (the INVOICE substitution profile is

created here).

Figure 8.20 Substitute Profiles

6. Map/group the classifications against substitute profiles.

Go to SPRO • SAP NetWeaver • Application Server

• Business Management • SAP Business Workflow

• Basic Settings • Substitute Profile • Assign

Substitute Profile.

7. You have to create a new entry here. Enter the

substitution profile and the classification name you’ve

created in the earlier step. Figure 8.21 shows the

substitution and classification profile. We’ve mapped the

INVOICE substitution profile with the INVOICE

classification in Figure 8.21.

Figure 8.21 Assign the Substitute Profile to Classifications

We’re now done with the configuration needed to set up

substitution profiles. Substitution profiles are linked with

classifications, and classifications are linked with tasks.

Therefore, there is a linkage established between the

substitution profiles and work items.

Now the user can select the substitution profile when he is

selecting the substitutes. Only one user can be substituted

for each profile. You have to design your profile in such a

way that the user should have the option for the correct

selection. Figure 8.22 shows the substitute with the profile

maintained.

Figure 8.22 Substitute with Profile

There are some other business terms used in the context of

substitution. In some places, it’s mentioned as delegation or

automatic forwarding of the work item as well. We’ve

discussed manual forwarding of work items in the workflow

administrator activities. For automatic forwarding of work

items, you can set up a substitute. The office inbox features

automatic forwarding of documents/mails. It will forward the

email/task details to the external ID you’ve entered. You can

set up the automatic forwarding of SAP office documents or

tasks in email to an external mail ID by choosing Settings •

Office Settings in the Business Workplace inbox, as shown

in Figure 8.23. Your work item emails will be automatically

forwarded to this mail ID. You have to schedule program

RSWUWFML2 in regular interval batch jobs or set up

extended notification.

Figure 8.23 SAP Office Document Automatic Forwarding

8.5.2 Substitutions in SAP Fiori

SAP had provided substitute maintenance in the My Inbox

app itself in SAP S/4HANA. You can maintain either planned

or unplanned substitutes directly in SAP Fiori.

Planned Substitutes

Planned substitution is usually targeted for a scenario

wherein you know the start date and the end date for your

absence. Your substitute will then see your tasks directly

displayed in his inbox for the period you defined.

Unplanned Substitutes

With My Inbox 2.0, you can also nominate a substitute for

your unplanned absence. In this case, your substitute will

need to accept the substitution to see your tasks in his

inbox. Unplanned substitution could be looked at as a

scenario where you assign permanent backup(s) for

yourself. When you’re unexpectedly absent due to

sickness or any other unforeseen reason, your backup

could take over your tasks and work on them until you’re

back.

Follow these steps to maintain substitutes:

1. Go to the My Inbox app, and click on the user profile

icon on the top-right side of the SAP Fiori launchpad.

Click on Manage My Substitutes , as shown in

Figure 8.24.

2. The Manage My Substitutes page will be opened. You

can maintain planned or unplanned substitutes in

different tabs on this page .

3. Click on the Add New Substitute button to create a

new substitute .

Figure 8.24 My Inbox Substitutes

4. Select the Substitute user ID from the popup window in

Figure 8.25 , and it will open another dialog to select

1

2

3

1

the substitution duration for that user . You can also

select the task group from the dialog .

5. The selected user ID will be added as a planned

substitution, which is shown in Figure 8.25 .

6. Follow the same steps and add unplanned substitutions

if needed. You need to select the substitution duration in

case of unplanned substitution.

Figure 8.25 Add Planned Substitution

3

2

4

8.6 Display Dynamic Labels for

Tasks to Display in Business

Workplace

We’ve discussed the standard work item information

available in Business Workplace. From the business data

point of view, only the work item title is available in the

Business Workplace work item section. There may be a need

to have some other data as a column in the Business

Workplace work item section. For example, accounts

payable clerk is a group of people who process all invoices

of the organization. They have an internal mechanism for

allocating work items based on company codes. It would be

helpful if the company code is provided as a column in the

Business Workplace work item view, so then they can use

the column filter of ALV to identify the work item that

individuals need to process. In this case, we can add a

dynamic column in the Business Workplace work item.

To add a dynamic column, you have to define the columns

and map the container element value that will be shown in

these columns for each task. If it’s not defined for any

specific task, then the field value will be blank. To define the

dynamic column, go to Tools • Business Workflow •

Development • Definition Tools • Worklist Client •

Dynamic Columns for Worklist (Transaction SWL1).

Figure 8.26 shows an example of how this configuration can

be done. You have to enter the User Name, Task number,

Header label, and container element (Printout field) for

each dynamic column. You can enter a maximum of 12

dynamic columns. In the User Name field, if you want this

dynamic column for all users, then enter “*”. Then, enter

the work item task number in the Task field. Enter the

container element of the task where the system will read

the value that will be shown dynamically. Enter this

container element in the Printout field. Enter the label for

this column in the Header field.

Figure 8.26 Dynamic Column Configuration for Business Workplace

You have to configure this for each task. Although this

configuration can be user specific, in productive systems,

it’s usually done for all users. You have to add the task

number, column header, and container name that will be

displayed as the data for the column. Dynamic columns are

very useful for sorting, grouping, and filtering purposes.

8.7 Event Trace and Event Queue

Administration

A workflow can be triggered directly from an application or

via an event. The workflow administrator manages and

controls the behavior of events and their receivers. There

are mainly three areas to manage: event linkage

configuration, event trace, and event queue.

The linkage between an event and its receiver is maintained

in the event linkage transaction. Go to Tools • Business

Workflow • Development • Utilities • Events • Type

Linkages (Transaction SWETYPV) to manage the event

linkage. More details about event and receiver linkage is

discussed in Chapter 5.

Event trace will be helpful to troubleshoot issues if any

workflow isn’t triggered. You can activate the event trace

and then trigger the business application to check if the

event is triggered and received for that event. You can

activate the event trace via Tools • Business Workflow •

Development • Administration • Event Manager •

Event Trace • Switch Event Trace On/Off (Transaction

SWELS). The details of the triggered event will be found in

Transaction SWEL via menu path Tools • Business

Workflow • Development • Administration • Event

Manager • Event Trace • Display Event Trace. Event

trace is generally turned off in the production environment.

It can be activated to troubleshoot issues when any specific

workflow isn’t started from an event.

The event can be managed using the event queue. It will

improve the overall performance of the system and will help

to manage the errors and monitoring of the events. To

process an event through the event queue, you have to

enable the event queue in the event linkage. Go to Tools •

Business Workflow • Development • Utilities • Events

• Type Linkages (Transaction SWETYPV) to enable the

event queue, as shown in Figure 8.27.

If the Enable Event Queue checkbox is activated, then the

event receiver is started via the event queue. If the

indicator isn’t checked or event queue isn’t active, then the

receiver is started immediately.

If the event queue is activated, the event triggering

information is stored in temporary memory. It’s then

processed gradually from that queue. If there is a sudden

surge of events, event queue manages that with even

distribution of the workload. So, there will be a little delay

between the event being triggered and the receiver

starting. Events with active linkage information are only

stored in the temporary memory. Events with errors are also

stored in the event queue and can be reprocessed from the

queue.

Figure 8.27 Event Linkage

Event queue is administrated from Transaction SWEQADM

via menu path Tools • Business Workflow •

Development • Administration • Event Manager •

Event Queue (see Figure 8.28).

Figure 8.28 Event Queue Administration Overview

The Overview tab will show the summary status of the

event queue, including the summary of the event queue

and all function statuses. Now let’s look at the rest of the

tabs:

Basic data

The event queue administrator and the event error

behavior are maintained in the Basic data tab (see

Figure 8.29).

Figure 8.29 Event Queue Administration Basic Data

You maintain the administrator here. You can maintain any

specific user, role, organization unit, position, work center,

or job as well. This perform will get notifications for event

errors. It’s recommended not to use any user IDs here;

instead, use other options relevant for your project. You

don’t have to change this setting if multiple people are

added as administrators or there is a change in the job

role.

Default system behavior in case of event error is defined

here in the Receiver error feedback field. There are

three options:

Deactivation of linkage

The event and receiver linkage will be deactivated

when any event triggering error happens. That will stop

all subsequent receivers from starting. Because event

linkage will be deactivated, event information won’t be

stored in the event queue, so retriggering of these

events from the queue won’t be possible. We don’t

recommend this setting because it doesn’t provide any

reprocess option.

Mark linkage as having errors

In this setting, the event linkage isn’t deactivated, but

the event receiver status is marked as Error.

Subsequent event information is stored in the event

queue. You can fix the root cause of the event

processing error. Then, change the event receiver

status as No Error either in the event linkage

transaction or in the Linkage with error tab. You can

then redeliver the events from the Linkage with error

tab.

Do not change linkage

In this setting, no change happens in the event linkage.

In case of an error, the event information is stored in

the event queue. The system will keep on triggering the

subsequent events. If there is any error in subsequent

event processing, then it will be stored in the event

queue. The difference between this one and the earlier

one is that in the earlier one, the system won’t start

processing the receiver after the first event is errored

out. All subsequent event information will be stored in

the queue. In this case, the system will try to process

subsequent events after the first error happened.

Normally, the event error is caused by parameters.

Parameters are specific to any business object instance,

so if an error occurs for a particular instance, it doesn’t

mean that similar error will occur for all instances of

that business object. We recommend using this setting

in the event queue.

Activation

You’ll activate the event queue in this tab. You can switch

the event queue ON/OFF here. It provides you a link to

navigate to the event linkage transaction where you can

activate the event queue for event receiver linkage.

You can also set whether the event information will be

deleted after the event delivery. It’s recommended to

delete the event information after delivery to improve

event processing speed.

The event manager tries to start the event receiver based

on any triggered event. If there is any error, the

information is passed back to the event manager. If the

nature of the error is temporary, event manager will try to

process the event again. The maximum retry count is

maintained in the Retries when temporary error field.

The error will become permanent after the system

reaches the retry count.

Background job

You’ll schedule the background job to process the event in

this tab. The operation mode of the background job is

defined here. You can set the job as Periodic or

Depending on Load (Dynamic). For periodic

background jobs, the job will be executed within a fixed

interval, and the number of records it will access is

entered in the Number of Events per Read Access

field. For dynamic operation mode of the background job,

it will consider the time interval between two read

accesses as maintained here till the queue has some

events to process. If the queue doesn’t have any events

to process, then it will consider the interval until event

queue next checks field for the next execution. The

dynamic option provides some benefits in terms of system

load.

If you want to change any parameter for the periodic job,

you have to unschedule the background job first. Then

you can change the parameters.

You can schedule the background job for the event queue

from here.

Event delivery

You’ll define how the event receivers are started in this

tab. Event receivers can be started synchronously (RFC)

or asynchronously (tRFC). There are two options:

Sequential or Parallel in the server group.

For Sequential, it uses one application server and

processes the event receivers one by one. It can wait till

the receiver function is completed (synchronous), or it can

continue with the next call without waiting to complete

the receiver function (asynchronous). It’s recommended

to use the asynchronous mode of operation.

You can process in parallel using a server group. Then,

certain servers will be dedicated for this process.

Therefore, there won’t be an impact on other users if

there is certain rise in the number of events. As of now,

only synchronous processing is supported in parallel

processing with server groups.

Linkage with errors

You’ll able to handle the events with errors in this tab.

This tab will show all the event events with event receiver

error. You can reprocess those events from here.

As shown in Figure 8.30, you’ll find all the events with

errors. You can reset the receiver feedback to No Error by

clicking the Linkage Status button. You can reprocess

the events from here. During the reprocess, you can

reprocess one event at a time or reprocess all at once.

If the events can’t be reprocessed, it needs to be

retriggered from the business application, so you can

delete those events once the event is retriggered from the

business application. The Delete Event button will delete

all the events (count is showing in the column number).

You should reprocess the error and make sure you want to

delete the remaining ones because they can’t be

reprocessed.

Figure 8.30 Event Queue Linkage with Errors

8.8 Process Incoming Documents

with ArchiveLink

There is a common business process where the workflow

needs to be started against an external document that is

received. This can be for incoming vendor invoices; any

customer, vendor, or material master specification; or any

other business object where creation of the system

document starts from a paper document. Let’s take the

example of a vendor invoice. Per the business process, the

vendor sends an invoice either as a paper document or

electronically. High-level business requirements for this

process will be as follows:

There should be an SAP application document created for

the invoice.

The relevant data from the invoice document should be

captured in the business transaction.

The paper/electronic invoice image should be linked to the

business application document for any reference.

The invoice should be sent for approval and posted after

all necessary approvals.

This requirement is designed and put into practice with

standard workflows with the ArchiveLink feature.

As mentioned earlier in this chapter, ArchiveLink is the SAP

integrated service that links the archived document with the

SAP businesses application document. When you upload any

document in SAP or send any documents as output

attachments, you can store those within the database or in

an external storage. But it doesn’t make sense to store

these in a costly database. So, any incoming documents,

outgoing documents, print outputs, and archived files are

stored in an external content server. SAP provides standard

integration to link these documents with SAP business

application objects. This linking is done via ArchiveLink.

Figure 8.31 shows a schematic diagram of content storage

and linkage.

Figure 8.31 Content Server and ArchiveLink Overview

In general, the content server products provide functions to

scan a physical document or retrieve electronic documents

from any common inbox, store it in content server, and

provide a URL that can be opened from a standard browser.

It can also have an optical character recognition (OCR)

system to read the content of the document and

prepopulate any business objects. There are few variations

of this process we’ve seen in various clients, as follows:

Variation 1: Storing for subsequent entry

Step 1: The vendor sends an invoice either

electronically to a common mailbox or in the form of

physical paper.

Step 2: Someone in the support desk scans the physical

paper. For electronic documents, the system will scan

the inbox and send the attached document to the

content server. In both cases, the content server will

store the document and will share a URL to the SAP

application.

Step 3: An SAP application will create a work item with

the attached URL link.

Step 4: The agent of that work item will open the task.

It will show the attached document in a browser. The

system will also open the business transaction

(Transaction FV60, in this case) with defaulting the

document type (this is just an example).

Step 5: The user will enter the required data and save

the business transaction invoice. When the invoice is

created in this step, the content server document link

will be linked to this invoice using ArchiveLink.

Step 6: The saved invoice may go further in the

approval process per system design.

Variation 2: Storing for subsequent assignment

Step 1: The vendor sends an invoice either

electronically to a common mailbox or in the form of

physical paper.

Step 2: Someone in the support desk scans the physical

paper. For an electronic document, the system will scan

the inbox and send the attached document to the

content server. In both cases, the content server will

store the document and will share a URL to SAP

application.

Step 3: An SAP application will create a work item with

the attached URL link.

Step 4: The agent of that work item will open the task.

It will show the attached document in a browser. The

business document is already created for this

document, so the user enters the document number

that should be linked to it. The system will link the

content server link with the business application using

ArchiveLink.

Step 5: The saved invoice may go further in the

approval process per the system design.

The difference between the two processes is the business

transaction didn’t exist when the document was sent by the

vendor. In the second variation, the business document

already exists. There may be another supporting document

the vendor has sent that needs to be linked to an existing

invoice document. There can be further sophistication with

OCR software where the system can read the data from the

document and prepopulate the business document. In a few

cases, it can create a parked document with the information

scanned. In some cases, you may have to create a custom

application to capture the data scanned and read by the

OCR system.

All these scenarios can be achieved with a storage scenario

integrated with business workflow which use Archivelink.

To use ArchiveLink, you have to do the basic configuration to

connect the content repository server with SAP. The Basis

team in your project will help you set this up. The

configuration can be done via configuration path SAP

NetWeaver • Application Server • Basis Services •

ArchiveLink • Basic Customizing. The key configuration

nodes are as follows:

Define Content Repositories

Define the logical units of the content server. You can

have different logical units by system or business area.

Edit Document Classes

Define the type of document such as PDF, XML, ALE, DOC,

and so on.

Edit Document Types

You have to create the document type. This document

type will group similar kinds of business documents. The

document type will also be linked to the storage content

area. For example, you can create a document for an

invoice that isn’t a purchase order.

Edit Links

You’ll link the ArchiveLink document type you’ve created

in the earlier step with an SAP business object, content

repository ID, and an SAP table that will connect the SAP

object and ArchiveLink. Creating the document type and

maintaining this link can also be done using the

Document Type Customizing wizard. The business object

linking with ArchiveLink should support interface IFARCH21.

The interface has method ArchivedDocsDisplay, which

displays the ArchiveLink objects linked to the business

object. This business object will only display the

ArchiveLink object. If you have to also open the

transaction automatically for data entry along with

displaying the ArchiveLink object, then you have to use

object IMAGE, which also contains interface IFARCH21.

We’ve already set up ArchiveLink with the document type.

The document type is also linked with an ArchiveLink

business object so that when the method gets executed, it

can open the ArchiveLink document.

Now we have to link the document type with a workflow and

an SAP business object where the link will be saved. SAP has

provided two standard tasks for this activity. For the entry

scenario (variation 1 scenario), SAP has provided task

TS30001128, and for the assignment scenario (variation 2

scenario), it’s TS30001117. You can use the document type

Customizing wizard to link all these elements. You can find

this Customizing IMG configuration via path SAP

NetWeaver • Application Server • Basis Services •

ArchiveLink • Customizing Incoming Documents •

Workflow Scenarios • Use Document Type

Customizing Wizard. Figure 8.32 shows all the elements

of the document type and workflow linking customization.

Figure 8.32 Document Type Customizing Wizard

This ArchiveLink document needs to be linked to business

object financial accounting document BKPF. In this context,

your configuration will look like following:

Document Type Configuration

Document Type: ZFUCSNONPO

Document Class: PDF_SCAN

Maintain Links between Document Type and Object

Type

Object Type: BKPF

Document Type: ZFUCSNONPO

Relationship ID: TOA01

Assign Document Type to Workflow

Document Type: ZFUCSNONPO

Object Type: BKPF

Method: CREATE

Task (Entry Scenario): TS30001128

Task (Assignment Scenario): TS30001117

Maintain Workflow Parameters

Document Type: ZFUCSNONPO

Parameters: TRANSACTIONCODE

Contents: FV60

Now you have to configure the responsible agent for the

workflow. This is defined within the document type

Customizing wizard, or you can set in the configuration node

via SAP NetWeaver • Application Server • Basis

Services • ArchiveLink • Customizing Incoming

Documents • Workflow Scenarios • Maintain

Presettings for Storage Scenario. You can create default

settings. Under the default settings, you can set the

responsible agent for each document type defined in the

preceding list. You can use all elements of the workflow

agent such as position, user, work center, organization unit

job, and so on. However, you can’t dynamically determine

the agent in this scenario.

If the standard tasks TS30001128 and TS30001117 don’t meet

your business requirements, then you can create your own

custom workflow. Follow menu path SAP NetWeaver •

Application Server • Basis Services • ArchiveLink •

Customizing Incoming Documents • Workflow

Scenarios where you’ll use the workflow wizard to create

your own workflow. The three functions of display scanned

document, enter/assign business object, and link to

business object will be three separate tasks in the custom

workflow. You can add your own steps in this custom

workflow as well. You can also write your own agent

determination rule here.

If you want to start an approval workflow of the business

object after the ArchiveLink is established, you can also set

it up on the back of an object link. Per the business process,

once the user key is in the data, it needs to be sent for

business approval based on the specific object approval

matrix. When the archive link is completed, the system will

trigger event ASSIGNED. You can set up to trigger another

approval workflow using event linkage. You can use a

separate standard workflow or a custom workflow that will

be triggered based on the assigned EVENT.

The workflow for incoming documents is a very common

scenario in all organizations. You can adopt a standard SAP-

provided solution to easily integrate the document

ArchiveLink with the business application.

8.9 Summary

You’ve learned in this chapter how to maintain,

administrate, and troubleshoot workflows. We’ve discussed

common workflow errors you may encounter as a workflow

developer and administrator and what your approach should

be to resolve them. We’ve explained in detail the

transaction and workflow log that will be helpful to

troubleshoot workflow errors. We’ve discussed Business

Workplace where user will execute all work items. It’s

important to know all standard features available to help

you to guide users to effectively use the workflow capability.

It will also help you design the work items while keeping end

user usability in mind. We have a common administrator

maintenance activity on how to reassign any work item

when the original responsible user ID is out of the office for

a longer period of time. We discussed substitution to handle

these situations.

We also discussed a very special and common workflow

scenario utilizing the ArchiveLink feature. A workflow is

triggered based on a scanned document stored in an

archive repository. We talked about a couple of commonly

used scenarios and respective solutions, including the

system configuration required. You also learned how to use

workflows to handle errors in IDoc processing. In the next

chapter, we’ll discuss the reporting capability of workflows

and how these reports can help you to further improve the

workflow capability in the organization.

9 Application Link Enabling

and Reporting

This chapter discusses how classical workflows can be

leveraged for automating Application Link Enabling

(ALE) and IDoc processes, especially in the areas of

inbound IDoc error handling and notifications,

outbound error notifications, and active monitoring.

Additionally, we’ll introduce you to the common

workflow data tables, application programming

interfaces (APIs), and standard reports. Lastly, we’ll

talk about program exits and how they can be

leveraged for collecting data required for your custom

workflow reports.

We’ll discuss in this chapter how workflows can help

automate the error handling in integration and different

kinds of reporting requirements in the workflow domain.

When we think about workflow, the first thing that comes to

mind is integrating different business process steps

together. Workflow helps to minimize the lag time for

handover between different step, and it provides a robust

mechanism of tracking where a process is stuck. Workflow is

also very helpful in automating IDoc interface error

handling. There are thousands of IDocs processed in an

organization every day. Some of those IDocs fail in the

application layer due to different reasons. Some

organizations set up a manual process to monitor these

failed IDocs and notify responsible users, but there will be a

delay in any kind of manual email-centric process. The user

or management won’t be able to track what has already

processed and what is remaining. Normally, these manual

processes are done once a day, so the system won’t have

the capability to process the errors immediately.

You’ll learn in this chapter how you can set up a workflow

that will be triggered immediately after an IDoc failure. It

will also send a work item to the user to facilitate the

reprocess from his business user inbox. We’ll also discuss

how a summary notification can be sent to supervisors for

any business-critical IDoc that needs to be processed

immediately. In the second part of the chapter, we’ll discuss

the general reporting requirements you get in the workflow

area, the standard reports available, and the strategy for

building the reporting capability.

For IDoc error handling, we’ll consider one business scenario

where IDoc error handling is required. We’ll walk step-by-

step through the configuration guide to set up workflow

events and tasks to trigger a work item whenever there is

an error in IDoc processing. We’ll discuss how to determine

the recipients who will receive these work items. We’ll also

cover the settings for both handling IDoc errors and also

notifying the user of the successful IDoc posting. Then, we’ll

discuss active monitoring, which is used to notify

supervisors when any predefined IDoc threshold of error is

reached. This will provide management visibility if any

critical process will be impacted.

In the second part of the chapter, we’ll cover some of the

reporting requirements on the performance of the workflow,

operation reporting to find where any work item is stuck,

and overall tracking of workflow progress. In most of the

scenarios, there will be a need to build custom reports to

meet the business requirements, so we’ll provide you with a

list of common workflow tables and APIs that will help you

build custom reports to meet business requirements.

We’ll also talk about program exits in workflow. Program

exits provide hooks where you can get some runtime

information and store that information in custom tables.

This information can be used later for analytics and other

reporting requirements.

9.1 Error Handling during IDoc

Processing

IDocs are widely used to exchange business application data

between systems. Any IDoc failure should be investigated

and reprocessed to ensure business continuity. There is

always a business need to monitor IDoc failures and

reprocess. This is established with manual monitoring and

Excel-based tracking. That delays the reprocessing, and

you’ll lose track of what could be successfully processed

and what needs further manual intervention. Workflows can

be set up to handle IDoc failures. In this section, we’ll

consider one business scenario of handling sales order IDoc

creation and explain how to set up and test IDoc failure

handling using workflows.

We’ll start by discussing a business scenario when IDoc

error handling via workflow is needed. We’ll cover the basic

framework to set up the error handling and then elaborate

on the configurations required to set up a workflow to

trigger when an IDoc goes into error. Similarly, we’ll go

through the setup needed to notify on successful posting of

IDocs. We’ll also describe how to test this configuration

setup in a development environment for unit testing. At the

end, we’ll talk about an exception scenario when IDoc

processing start is controlled by the workflow. Normally,

IDocs are processed immediately after they reach the target

system. But in some exception cases, a user decision is

needed before it can be processed, and that is controlled

using a workflow.

9.1.1 Business Requirements for Inbound

IDoc Error Handling

The customer order is a key element in nearly every

business, so orders are important from a business point of

view. Businesses should add extra reliability in its creation

process and enable groups of persons to react quickly if any

errors occur. This section covers how to handle errors that

occur during the order creation via IDocs.

When an inbound sales order comes in via IDoc (through

middleware), an error occurs occasionally that prevents the

order creation in SAP S/4HANA. A customer care

organization needs to be aware of these errors, so that they

can take corrective action and notify the customer. If for any

reason, the IDoc is in an error status such as 51, a workflow

should be triggered for members of a group, so that those

users can process the IDoc in the foreground to rectify the

error. We’ll explain this scenario with IDoc message type

ORDERS.

Let’s start with a simple requirement. When an IDoc with

message type ORDERS fails, it should go to a dedicated group

of people to reprocess. The basic solution is as follows:

1. An event is triggered for every IDoc failure.

2. There is a foreground task that can be triggered on the

back of this event. The business object for subtype

IDOCAPPL has standard method INPUTFOREGROUND to process

the IDoc in the foreground.

Now, let’s first configure the standard solution available.

Then we’ll discuss some custom variations for the

requirements.

9.1.2 Handling the Inbound IDoc Error

Now we’ll discuss the different configuration needed to

trigger the workflow and process the work items:

1. First, we’ll configure the partner profile in Transaction

WE20 for the ORDERS message type. The partner

profile setup is client dependent, so you have to set it up

in each system and client. Figure 9.1 shows the partner

profile configuration where the message type is linked to

the process code.

2. When setting up a partner profile, you have to enter the

partner number (Partner no.) that is the logical system

name from where the IDoc is coming. Enter the message

type name (in this example, “ORDERS”) and Process

code. These are standard IDoc configurations, not

specific to the workflow, so we won’t discuss any further

details here about the partner profile setup.

3. For postprocessing, permitted tab information is used for

the IDoc error-handling scenario. The standard agent

determination rule will send the error IDoc work item to

the person ID as mentioned in the Post Processing:

Valid Processors tab. You can enter a specific user ID

or work center, job, organization unit, person, or position

here. An example with user ID set is shown in Figure 9.2.

The function module that will process this inbound IDoc and

events for any error is maintained against the process code.

All these processing details are maintained in Transaction

BD67. Figure 9.3 shows the process code setup details. For

any standard SAP-provided process code, this configuration

will already be there. If you’ve created a custom process

code to process a custom IDoc, then you have to enter

Object Type, Start Event, and End Event in the block

IDoc in this transaction.

Figure 9.1 Partner Profile Configuration

Figure 9.2 Post Processing Agent for IDoc

IDOCAPPL is the main business object for any IDoc error

handling. A subtype of this business object is created for

specific message types. In our scenario, SAP has created

subtype IDOCDELORD of business object IDOCAPPL for delivery

order IDoc error handling. Per Figure 9.3, whenever any

ORDERS IDoc fails, SAP will trigger event INPUTERROROCCURRED of

business object IDOCDELORD. If you’re creating a custom

process code, then you can create a subtype of business

object IDOCAPPL.

The event details in case of IDoc failure are maintained in

the IDoc section. Business object programming for IDoc

failure handling is written in the method InputForeground and

InputBackground of business object IDOCDELORD. You’ll find these

two methods for all IDoc error-handling business objects.

Now you know what event will be triggered when the IDoc

fails. You need a workflow to be triggered based on the IDoc

error event. You can find the standard task SAP has provided

to process this error by going to business object builder

Transaction SWO1, entering the business object name in the

Object Type field (in this case, “IDOCDELORD”), and

searching the where-used list. You’ll get the standard SAP

task to handle this specific IDoc error. SAP has provided

TS20000117 for IDOCDELORD.

Figure 9.3 Process Code Configuration

Figure 9.4 shows the attributes of task TS20000117 to process

DELORD IDoc errors.

Figure 9.4 Standard Task to Process DELORD IDoc Errors

This task uses business object IDOCDELORD method

INPUTFOREGROUND to process the IDoc in foreground. The

business object is the subtype of IDOCAPPL. So, if you have to

create an error-handling method for a custom IDoc, you also

have to create your business object as a subtype of IDOCAPPL.

You’ll find the triggering event to start this task and the

event’s details in the Triggering Event tab. The task will

be triggered by triggering event IDOCDELORD-

INPUTERROROCCURRED, as shown in Figure 9.5.

Figure 9.5 Triggering Event for IDoc Error Handling Task

The event linkage will already be maintained for standard

SAP-delivered tasks, but it won’t be activated by default.

You can activate the event linkage by clicking the Event

Settings button . In the popup that appears as shown in

Figure 9.6, select the Enable linkage activated and

Enable usage of event queue checkboxes, and save the

settings. This will activate the event linkage.

Figure 9.6 Activating Event Linkage for the IDoc Failure Processing Task

This task is an asynchronous task, so a terminating event is

needed to complete the work item once the IDoc is

processed, as shown in Figure 9.7. This setting will already

be there in the predelivered SAP standard task, so you don’t

have to do anything here. This is given as a reference in

case you’re creating a custom task to process a custom

IDoc.

Figure 9.7 Terminating Event to Complete the Work Item

Now, who will get this work item? This is maintained in the

Default rules tab, as shown in Figure 9.8. Standard SAP

default rule 20000046 reads the postprocessing agent from

the partner profile to determine the agent. You may have

different logic to determine the agents to process the

workflow. In that case, you have to create a task similar to

TS20000117 and a custom rule. Write your own logic to

determine the agent. Assign that custom rule as a default

rule for the task you’ve created. Refer to Chapter 6,

Section 6.2, for details on how to create a custom rule.

Figure 9.8 Default Rule for Work Item Agent to Process the Workflow Task

As you’ve seen, a triggering event is linked to the process

code. It may happen that the same event is triggered for

multiple message types, but you want to set up the

workflow error handling only for a specific message type.

You can write the start condition in the condition editor

(Transaction SWB_COND) to filter further. You should check

all the active IDoc error-handling events in the system;

validate which ones are needed; and, if any further filtration

is needed, only start the workflow for the required one.

The easiest way to find out how many process codes are

linked to the same IDoc error-handling event is to check the

content of table TBD52. Go to Transaction SE16, and enter

table name “TBD52”. Click on the table contents. In the

selection screen of the table TBD52 data browser, enter

“EVENT_TYPE = INPUTERROROCCURED” and “IDOCOBJTYP

= The Business Object”, and execute this selection.

If you find multiple entries in this table, that means the

same error-handling event will be triggered for multiple

message types. If you don’t want to activate the IDoc error-

handling process for all, then you have to further filter using

the event filtering start condition. Chapter 5, Section 5.3,

provides details of how to create event start conditions.

Figure 9.9 shows an example where the same IDoc error-

handling event is used for multiple process codes.

Figure 9.9 Same IDoc Error-Handling Event Used for Multiple Process Codes

If you don’t verify this, you may find that lots of

unnecessary work items are created and sitting in

someone’s inbox. Normally, these tasks are generic tasks. If

the post processing agent in the partner profile isn’t

maintained, then these work items will go to everyone in

the organization. So, this verification is a very important

part of the system setup.

There can be some custom requirements that you won’t be

able to handle just with this reprocessing task. In those

scenarios, you have to build a custom workflow. For

example, there may be a need of escalation that requires

deadline modeling. In addition, you may have to send

separate emails to other user groups notifying them the

IDoc error. You have to build a custom workflow in those

scenarios. You can start the workflow against the same

event triggering mechanism as mentioned here. Then you

have to build the entire process in the workflow builder;

you’ll need to create a custom business object and method

for the additional logic required to process the workflow. You

can use the standard business object method INPUFOREGROUND

to process the work item.

9.1.3 Notification of Successful Posting

Similar to error processing of IDocs, you can also send

notifications on successful posting of any IDoc. As there is

no standard task available, you have to create a custom

task to send a notification on successful posting of the IDoc.

We’ll take the same example of IDoc DEBMAS:

1. Get the process code to process the inbound IDoc as

mentioned in Section 9.1.2. In our case, the process

code is DEBM.

2. Link the successful posting event with the process code.

Go to Transaction BD67 to configure the process code,

as shown in Figure 9.10. Here, you need to ensure that

the success event INPUTSUCCESS is maintained for the

process code.

Figure 9.10 Success Event INPUTSUCCESS Configured for the Process

Code

Business object IDOCDEBMAS is used to process this

message type DEBMAS via process code DEBM. For any

standard SAP process code, you’ll get the business

object type and event details in Transaction BD67.

Business object IDOCDEBMAS triggers event INPUTSUCCESS

after successful posting of the DEBMAS IDoc, so, this event

is configured in this step. Figure 9.10 shows the

mapping of the success event for the process code.

3. Create a custom workflow to send the notification. The

design of the custom workflow will be per your business

requirements. We won’t go into the development details

of the workflow here as these are covered in detail in

Chapter 4. The main objective of this section is to

demonstrate how to trigger a custom workflow when an

IDoc is successfully in SAP. This custom workflow may be

used to trigger a simple notification to a responsible

user email address for the IDoc (determined based on

the responsible user in the partner profile or per your

own business rules and picking up the email address

from user master), or it may perform some post-

processing activity on the document that is posted. In

our example, we’ll consider a simple workflow with a

send mail step to notify the user of successful posting.

For details on workflow and send mail step creation,

refer to Chapter 4.

4. Once the workflow is created, open the workflow from

Transaction PFTC, and navigate to the Triggering

events tab. Here, add an entry for your IDoc business

object type and success event per the details from

process code settings in Transaction BD67 (refer to

Figure 9.10). Figure 9.11 shows the details of the event

linkage with workflow. Here, you enter the Object Type

as “IDOCDEBMAS”, enter the Event as

“INPUTSUCCESS”, and then maintain the Binding as

prompted by the system with a suitable object type

container element. Finally, activate the event linkage by

clicking the button beside the event linkage entry (far

left of Standard events table) so that it turns green.

Capture the entry into a Customizing transport when

prompted.

Figure 9.11 Event Linkage Entry with IDoc Object Type, Success Event,

and Custom Workflow

5. The workflow definition may contain any step(s) per

your requirement. In Figure 9.12, we’ve added a simple

Send Mail step just to demonstrate the functionality.

Figure 9.12 Workflow Definition for Successful Notification of IDoc

Posting

The determination of the user (and their email address)

who should receive the notification should be per your

own business requirement.

9.1.4 Testing Procedure

You can unit test both the IDoc error-handling workflow and

the successful posting workflow by creating an IDoc with

IDoc test Transaction WE19. Create a test inbound IDoc with

data for the scenario you’re trying to test. For an error-

handling case, enter some incorrect data in the IDoc; for a

successful case, enter all the data correctly. The

corresponding workflow or notification will be triggered and

will be available in the user’s inbox

Follow these steps to test the workflow for successful

posting:

1. Create a test DEBMAS (Customer Master) IDoc via

Transaction WE19. In an actual business scenario, this

IDoc will be triggered automatically from an external

system or via a load program in the same system.

However, for testing purposes, we’ll use Transaction

WE19. Here, you can create an IDoc from scratch or

copy an existing IDoc that was successfully posted

(status 53). In this example, per Figure 9.13, we’ve

copied the data from an existing DEBMAS IDoc in 53

status.

Figure 9.13 Creating an IDoc as a Copy from Transaction WE19

2. Once the IDoc data is copied, click on the Standard

Inbound button, and then confirm the partner profile

details in the subsequent popup if the status appears

green. This will create a new inbound test IDoc and post

it (if the partner profile is set with the Post

Immediately setting). Figure 9.14 shows an example of

IDoc posting via Transaction WE19. As soon as you click

on the Standard Inbound button, a popup screen

comes up to confirm the partner profile based on the

control data of the IDoc (see Figure 9.15). As soon as

you confirm the popup, the IDoc is posted.

Figure 9.14 Posting an IDoc via Transaction WE19: IDoc Test Transaction

Figure 9.15 Partner Profile Confirmation Popup before IDoc Posting in

Transaction WE19

3. Copy the IDoc number shown after posting the IDoc in

the previous step, and enter the same in Transaction

WE02 to check the status. If the IDoc status shows 53

(see Figure 9.16), then the IDoc posting was successful,

and your notification for successful posting should be

created.

Figure 9.16 IDoc Status Check from Transaction WE02

4. Check the notification from an Outlook email inbox or

Transaction SOST (if email dispatch outside SAP isn’t

allowed in your development system). The notification

confirms the successful testing of your custom workflow.

Figure 9.17 shows the details of the notification.

Figure 9.17 IDoc Posting Notification as Viewed from Transaction SOST

5. For IDoc error-handling workflows, the workflow is

triggered when the IDoc posting fails and IDoc is set to

51 status. In this case, a work item is sent to the

responsible user’s SAP inbox, and the user must

manually reprocess the IDoc after the root cause of the

error has been fixed. Figure 9.18 shows a sample work

item for the error-handling workflow in SAP inbox (you

can view the same from the My Inbox app as well).

Figure 9.18 Work Item Created in the User Inbox to Process the IDoc in the

Foreground

You can select the work item from the inbox and execute it

by clicking the button. Once the work item is executed

successfully, the work item will disappear from the user’s

inbox.

9.1.5 Setting Up an Inbound IDoc Process via

a Workflow

Normally, IDocs are processed immediately without any

manual intervention. Sometimes, however, requirements

come up where the IDoc should be reviewed before it’s

processed. In this scenario, system setup can be done to

start a workflow for an incoming IDoc. SAP doesn’t provide

any standard workflow for this kind of requirement. These

workflows are custom-developed workflows.

The configuration steps to meet this requirement are as

follows:

1. Create a workflow or standard task. This is described in

detail in Chapter 4.

2. Create a new process code. Go to Transaction WE42,

and click on the New Entries button to enter the

details, as shown in Figure 9.19. Enter the Process

code, Description of the process code, and

Identification (workflow number you’ve created; in this

case, “WS20000183”). Select the Processing with ALE

service radio button and the Processing by task radio

button. Now this process code will always trigger

workflow WS20000183 before processing the IDoc.

3. Assign the newly created process code in the partner

profile configuration. Go to Transaction WE20. Select the

inbound partner profile where you want to link the

process code. Update the message type and process

code with the IDoc message type and the process code

you created in the earlier step.

Figure 9.19 Settings to Process the IDoc with the Workflow

9.2 Active Monitoring

We’ve discussed in the earlier section how workflow can be

set up for each IDoc failure. The responsible user gets one

work item for each IDoc failure to reprocess these failed

IDocs. For very critical business processes, there may be a

need to send an alarm to the supervisor if there are too

many IDoc failures. This can be achieved by setting up

active monitoring.

What is active monitoring? Active monitoring allows you to

set up a batch job that will trigger a work item when a

threshold in the number of IDoc failures is reached. The

threshold is the number of IDocs in a particular status within

a time limit.

Let’s discuss two business scenarios. You get IDocs from a

third-party system in the morning that provide you the

information regarding what should be ready for shipment for

same-day delivery. There will be a penalty if the shipment

isn’t created on the same day before a stipulated time. In

this scenario, you already have set up the IDoc monitoring

workflow. The person responsible in the warehouse will get

those IDocs for reprocessing, but there should be

management visibility of the failures as this is business

critical. You can set up active monitoring for this particular

IDoc, which will send consolidated information via a

workflow to the supervisor,

Other scenario occurs when, due to some system

configuration/data issue, lots of IDocs start failing. The

individual owner of that IDoc is getting a work item to

reprocess the failed IDoc. But the core issue isn’t resolved in

a day. Therefore, the responsible person for the business

process should be notified of the high number of recurring

IDoc failures. This can also be achieved by active

monitoring.

Program RESIDOCA is scheduled in a batch job to set up

active monitoring. You can execute the same program via

Transaction WE06. Figure 9.20 shows the active monitoring

program selection screen.

Figure 9.20 Selection Screen of the Active Monitoring Batch Job

In the recipient details, you can enter the user or any other

recipient type (e.g., work center, person, position, etc.) who

will receive the work item. The next block is the time

duration when the program will look for erroneous IDocs. In

the first business scenario mentioned, you’ll know when

those IDocs come to your system. You can set up the back

job and the time period for selection. In Figure 9.20, it will

consider the IDoc for the last 10 hours. Other settings on

this screen include the following:

Critical IDoc Number

Enter the threshold of the number of failures. In this case,

the work item will be generated if the number of failures

is more than one.

Current Status

Enter the IDoc error status that will be considered for

selection, such as 51, 56, or 64.

Logical Message Type

Enter the IDoc message type you want to set up the

active monitoring.

For the other partner-related parameters that appear here,

the same message type can be used for several business

processes. You can enter other partner parameters for exact

selection of the IDocs.

You have to schedule this batch job daily (or based on your

requirement). Whenever the number of failed IDocs crosses

the critical IDoc number entered in the selection screen, a

work item for task TS74508518 will be sent to the recipient.

When the user executes this work item from the inbox, it will

show all the error IDoc numbers and the current status. The

user can refresh the list to get the current status of the IDoc.

It will help the supervisor to closely monitor the progress of

error resolution for the business-critical IDocs.

9.3 Common Workflow Data Tables

Throughout different other sections, we’ve already seen

multiple workflow-related tables. In Table 9.1, we’ll highlight

the different common workflow tables and their purposes.

Table

Name

Details

SWWWIHEAD Read Work Item Header: This table stores

the header information of a work item, such

as the work item ID, work item type,

creation date, and so on.

SWW_WI2OBJ Workflow Runtime: Relation of Work Item to

Object: This table links work items to their

corresponding objects, such as business

objects, tasks, or processes.

SWWUSERWI Current Work Items Assigned to a User

SWW_CONT Workflow Runtime: Work Item Data

Container

SWW_CONTOB Workflow Runtime: Work Item Data

Container (Only Objects)

SWWLOGHIST Workflow Runtime: History of a Work Item

SWFDEVINST Event Linkages with Instance Reference

SWFDEVTYP Event Linkages without Instance Reference

AGR_USERS Assignment of Roles to Users

Table

Name

Details

HRS1205 Active Version of Workflows

SWF_CPWF_INST Workflow Instance Information

SWN_NOTIF Workflow Notifications

SWW_EVENTS Events in Workflow

Table 9.1 Common Workflow Data Tables

Tips

The majority of workflow tables start with SWW. You can

search the tables in ABAP Data Dictionary (DDIC) by using

“SWW*” and then check the description. Some workflow

and task definitions are stored in standard infotypes, and

those tables can be searched with “HRS*”. In SAP

S/4HANA, a few standard core data services (CDS) views

are also given for workflows, and the corresponding DDIC

SQL views can be searched using “SWW_V*”.

9.4 Common Workflow Application

Programming Interfaces

SAP has provided many standard workflow APIs related to

workflow triggering, reading/writing work item data,

deadline processing, roles and rules handling, and more.

The majority of these APIs are in the form of function

modules. Table 9.2 lists the commonly used SAP workflow

function modules.

Function Module Name Details

SAP_WAPI_START_WORKFLOW This function module is used

to start a workflow. It

requires the workflow

definition ID and other

necessary parameters to

initiate the workflow. You can

trigger the workflow using

this function module without

triggering any business

event.

SAP_WAPI_CREATE_EVENT This function module allows

you to create an event in the

SAP Business Workflow

system. Events trigger the

start or execution of

workflows.

Function Module Name Details

SAP_WAPI_READ_CONTAINER This function module is used

to read the container

elements of a work item,

which hold the data relevant

to the workflow task.

SAP_WAPI_WRITE_CONTAINER This function module writes

the container of a work item.

SAP_WAPI_FORWARD_WORKITEM This function module is used

to forward a work item to

another user or agent.

SAP_WAPI_EXECUTE_WORKITEM This function module

executes a work item in the

foreground.

SAP_WAPI_CHANGE_WORKITEM_PRIO This function module

changes the priority of a

work item.

SAP_WAPI_GET_DEADLINES This function module reads

the deadline information of

the work item.

SAP_WAPI_WORKITEM_RECIPIENTS This function module reads

the recipient details of a

work item.

SAP_WAPI_WORKITEM_DESCRIPTION This function module reads

the work item description.

Function Module Name Details

SAP_WAPI_SET_WORKITEM_STATUS This function module sets the

work item status to another

status.

SAP_WAPI_DECISION_COMPLETE When a user decision step is

encountered in the workflow,

this function module is used

to provide the decision or

response of the user. It

allows the workflow to

proceed based on the user’s

decision.

RH_GET_ACTORS This function module gets

the agent details of a role.

RH_RESOLVE_RESPONSIBILITIES This function module

performs role resolution for

standard roles with

responsibilities.

Table 9.2 Common Workflow Function Modules

Tips

The majority of workflows start with SAP_WAPI, so you can

search for other standard workflow function modules with

“SAP_WAPI*” in Transaction SE37.

9.5 Workflow Reporting

We talked about administrative reporting in Chapter 8.

These reports are useful for a workflow administrator for

day-to-day support activity. However, there will be other

requirements from a business perspective. To check the

workflow process efficiency, key questions are asked:

How many instances of the workflow are triggered on a

monthly basis?

What is the average time taken to complete a workflow?

Which tasks are taking most of the time, and why?

How many instances of the work item are escalated with

deadlines triggered?

Which work items are sitting with the approver for a long

time?

Is there a need for a centralized report combining the

business data (e.g., purchase order number, vendor,

amount, etc.) and approval status?

There will be lots more questions asked from the operational

point of view, as well as to analyze the performance of the

workflow and remove the bottlenecks. SAP provides some

standard reports to analyze the data. All of these reports

provide basic selection criteria and output. A workflow log is

available in all the reports to find the details as required.

Let’s discuss some of these useful reports:

Workload Analysis

You can run the report execution Transaction SWI5 or use

menu path Tools • Business Workflow • Development

• Reporting • Workload Analysis. This report provides

a view of work items already completed and in-progress

work items. You can find how many work items are in a

user’s inbox and also the history of the workload. You can

execute the report for the work items completed after a

certain date. This can provide you an overview of

workload during some peak business operation times

such as year-end, holiday seasons, and so on. This report

also helps workflow administrators or process owners to

see which work items are pending for a long time. They

can then assign those work items to someone else.

Sometimes, people go on leave without a proper

substitution. This report helps you identify and expedite

the approval process. This report also shows the work

items where there is no agent assigned. Ideally, the work

item should handle this as an error if an agent isn’t found.

But depending on the possible agent and actual setup,

there may be work items where an agent couldn’t be

determined. This will show you those work items as well.

Figure 9.21 shows a sample output of workload analysis.

Figure 9.21 Workload Analysis (Transaction SWI5) Sample Report Output

Work Item with Monitored Deadline

You can execute Transaction SWI2_DEAD work items with

monitored deadlines to analyze which work items missed

the deadline. You can execute the report from menu path

Tools • Business Workflow • Development •

Reporting • Workitem Analysis • Workitems with

Monitored Deadlines. You can group by task, task

group, and so on. You can analyze if there is any trend of

missed deadlines for any specific workflows. Then you can

work with end users to understand the reason behind the

missed deadlines. The purpose of deadlines is to force

users to complete work items within a specific timeline.

But if deadlines are missed, then it may take longer than

the expected duration. All kinds of trend analysis can be

done with data. Whether this is a user-specific issue,

workflow-specific issue, or a particular time of the year,

that’s the kind of viewpoint you can build based on this

report output (see Figure 9.22).

Figure 9.22 Monitored Deadline (Transaction SWI2_DEAD) Sample Report

Output

Work Items by Processing Duration

You can execute Transaction SWI2_DURA to get the

execution time of the work item. You can follow menu

path Tools • Business Workflow • Development •

Reporting • Workitem Analysis •Workitems by

Processing Duration to execute this report. This report

will show you the wait time and processing time. Wait

time is calculated from task creation time until the

execution is started. Processing time is calculated from

execution started to execution completed. This data will

be shown in both averages within the timeline and also

details for each work item. It will also show you 10%,

50%, and 90% threshold barriers, that is, what is the

maximum time taken for 10%, 50%, and 90% of the work

item. In other words, with the duration reported, 10% of

the work items were completed. This data point will help

you analyze workflow performance. Then you can work

with the end user in a design-thinking workshop to

improve the performance. Figure 9.23 shows a sample

output of the Work Items by Processing Duration report.

Figure 9.23 Work Items by Processing Duration (Transaction SWI2_DURA)

Sample Report Output

There aren’t that many analytical reports available in SAP

S/4HANA. The reports also don’t have enough selection

fields and data output. So, you may end up writing your own

custom report for workflow. There are two kinds of reports

you may have to develop: operational report and analytical

report. You can consider writing operational reports within

SAP S/4HANA using the ABAP programming language.

Consider your data warehouse (e.g., SAP Business

Warehouse [SAP BW]) for writing analytical reports. There

are lots of workflow-related extractors provided. Work with

your SAP BW team to build the analytical report.

Normally, businesses will have requirements to have both

business application data and workflow-related information

in the same report, for example, develop a report to show

purchase orders that are still within the approval chain. You

may have to display purchase order details with the

amount, vendor, and other critical information from the

business object perspective. You also have to show how long

the approvals are pending, who is the current approver, and

what level of approvals are already done in the same report.

From the business operation perspective, high amount

purchase orders need to be followed up first (this is just an

example). You’ll also see who should be following up in the

same report. This kind of report requirement is very

common. Refer to commonly used tables and APIs to build

the report. Because these tables will handle high volumes of

data, if you have to access workflow containers that aren’t

stored as simple fields of a database table, the program

may face performance challenges. Always keep the

performance aspect in mind when you’re developing any

custom reports on workflow.

9.6 Implementing Program Exits to

Capture Data from Workflow Steps

Program exits in SAP workflow are exits or hooks within the

various states of a work item processing where you can add

your own custom logic. This custom logic may be required

for capturing workflow runtime data and updating a custom

table for reporting and analytics purposes. Sometimes, you

may also want to capture some additional statistical data

from workflow processing that may be added to the

workflow log or an action log within a custom application.

You can also use program exits to update some values on

the workflow container or work item container before

creating a work item or after execution of a work item.

Program exits are implemented via ABAP classes that

implement any one of the following interfaces at the

workflow header (version-dependent data) or workflow step

level:

IF_SWF_IFS_WORKITEM_EXIT

This interface may be used at both the workflow header

and work item step level. The class implementing this

interface has method IF_SWF_IFS_WORKITEM_EXIT~EVENT_RAISED,

which gets called when the corresponding event for the

workflow or the task work item occurs. Check out sample

class CL_SWH_WORKITEM_EXIT for reference.

IF_SWF_IFS_WF_CONSTRUCTOR

This interface may be used at the workflow header level

only. Here, method WF_CONSTRUCTOR is executed before the

start of the workflow. Check out sample class

CL_SWF_IFS_WF_CONSTRUCTOR for reference.

IF_SWF_IFS_WF_DESTRUCTOR

This interface may be used at the workflow header level

only. Here, method WF_DESTRUCTOR is executed after the end

of the workflow. Check out sample class

CL_SWF_IFS_WF_DESTRUCTOR for reference.

Figure 9.24 and Figure 9.25 illustrate the maintenance of

program exit classes at the workflow header and at the

workflow step level. Once you enter a valid program exit

class (an ABAP class implementing any of the three

interfaces mentioned previously), then at runtime, SAP will

trigger the EVENT_RAISED, WF_CONSTRUCTOR, or WF_DESTRUCTOR

methods, depending on each change of status of the work

item processing. Within these methods you’ll be able to

capture data from the workflow step and log into your own

custom tables or an application log per your requirement.

Figure 9.24 Maintenance of a Program Exit at the Workflow Header Level

Figure 9.25 Maintenance of a Program Exit at the Workflow Step Level

Let’s take a closer look at classes implementing the

IF_SWF_IFS_WORKITEM_EXIT interface and how you can use

method EVENT_RAISED of this interface to achieve your custom

requirements. Standard class CL_SWH_WORKITEM_EXIT provides a

sample implementation of this interface. Method

IF_SWF_IFS_WORKITEM_EXIT~EVENT_RAISED has two import

parameters:

IM_EVENT_NAME

This parameter supplies the event name to the program

exit. The event name identifies the stage of processing of

a work item at runtime. Table 9.3 provides the possible

events that may be triggered during the processing of a

work item. The constant values of the event names are

maintained in type group SWRCO, which in turn points to

type group SWFCO.

Event

Name

Exit Triggering Time

BEF_CREAT Before creating a work item

CREATED After creating a work item

Event

Name

Exit Triggering Time

BEF_EXEC Before execution of a work item by a user

AFT_EXEC After execution of a work item by a user

AFT_ASYINV After asynchronous processing of a work item

BEF_REMOVE Before removal of the work item from a

user’s inbox

STATE_CHG Any status change of a work item

AFT_REXEC After execution of a rule for a dialog work

item

BEF_DECI Before processing the decision option for a

user decision work item

BEF_ACTION Before processing the action for a work item

AFT_ACTION After processing the action for a work item

Table 9.3 List of Event Names along with Their Processing Time for the

Program Exit Method

Checking the event name before executing your custom

logic provides you with the capability to restrict the code

to the relevant processing time of the work item.

IM_WORKITEM_CONTEXT

This parameter refers to an object of type

IF_WAPI_WORKITEM_CONTEXT at runtime, which provides the

entire context of data for the current work item as well as

the main workflow. Table 9.4 lists some of the commonly

used methods of this interface along with their purpose.

Method Name PurposeMethod Name Purpose

GET_HEADER Reads the header work item data for

the workflow.

GET_PROPERTY Reads the property value based on

the property name assigned on the

Properties tab of an activity step.

GET_RULE_RESULT Delivers the result of the current rule

resolution, that is, the agents of the

current dialog work item.

GET_STATE_TRANSITION Whenever the processing status of a

work item changes, this method

returns the source and target status.

GET_TASK_ID Returns the task definition ID of the

current work item.

GET_WF_CONTAINER Returns the workflow container

details for the current workflow. Any

element of this container may be

further read using the common

Business Object Repository (BOR)

programming macros (refer to

Chapter 3, Section 3.1.8). You can

update values in the container as

well.

Method Name Purpose

GET_WI_CONTAINER Returns the work item (task)

container details for the current work

item. Any element of this container

may be further read using the

common BOR programming macros

(refer to Chapter 3, Section 3.1.8).

You can update values in the

container as well.

GET_TOP_CONTAINER Returns the workflow container

details for the top-level workflow. If

the current task isn’t called from a

subworkflow, then the result of this

method is the same as

GET_WF_CONTAINER. You can update

values in the container as well.

GET_WORKFLOW_ID Returns the workflow work item ID of

the current work item.

GET_WORKFLOW_TASK_ID Returns the workflow definition ID of

the current work item.

GET_WORKITEM_ID Returns the current work item ID.

SET_MESSAGE_TO_LOG Writes a message to the current

workflow work item log.

GET_DEADLINES Gets the deadline details for the

current work item, including

requested start, requested end, latest

start, and latest end.

Method Name Purpose

GET_DECISION_ALTS Returns the decision alternatives for a

user decision work item.

SET_DECISION_ALTS Adds or modifies the decision

alternatives for a user decision work

item.

Table 9.4 List of Commonly Used Methods along with Their Purpose in

Interface IF_WAPI_WORKITEM_CONTEXT

Additionally, exception CX_SWF_IFS_WORKITEM_EXIT_ERROR may be

raised in case of any errors during processing, and a custom

error message may be added to the exception as well.

These methods enable you to implement your own logic in

the program exit class, which may be maintained at the

workflow header level or at a step level. Note that you can

maintain multiple program exit classes at the same level; in

that case, all the classes will be executed sequentially when

the predefined events are raised by the workflow runtime.

Program exits are called at various stages of processing of a

work item. Some of these processing events are called in

the background by the workflow batch user ID (SAP_WFRT),

and others are called in dialog mode with the user ID of the

agent executing the work item. Depending on your workflow

design and the event, the program exits may be debugged

with an external breakpoint using the workflow batch user

ID or the agent’s user ID.

You can use program exit classes for any custom

requirement that fits the scope of the methods mentioned in

Table 9.4. However, most commonly, these classes are used

to update data from the workflow and current work item into

a custom table that may be readily consumed by reports

used for statistical analysis of the business process

implementing the workflow. Other common application

scenarios for program exits include workflow and task

container data manipulation and manipulation of runtime

processing options (e.g., decision alternatives).

9.7 Summary

In this chapter, you’ve seen how classical workflows can

automate ALE and IDoc processes. The chapter explains

how workflow may be used in inbound processing, error

notification, and outbound scenarios. You also learned about

common workflow data tables and workflow APIs (primarily

function modules) that can be used in different workflow-

related custom applications and also how to search these

table and function modules. The chapter also explains how

to implement program exits in workflow steps to capture

more detailed information during workflow execution, which

can be useful for reporting.

10 BRFplus

This chapter teaches you about using Business Rules

Framework plus (BRFplus) in a workflow scenario. You’ll

be introduced to general BRFplus concepts to ease your

understanding, and then the integration with SAP

Business Workflow will be discussed at length.

Additionally, BRFplus as a guiding system can also be

deployed across many processes and designs, so you

can use it in many other contexts where Business Rules

play a part in the overall decision management.

This chapter discusses the integration requirements of

BRFplus and SAP Business Workflow to see how we can get the

best of both worlds. But to better our understanding, it’s best

to take a closer look at the concept of business rules, then

move on to understanding the management systems that are

needed as a tool, and finally look at the BRFplus tool that SAP

provides to build business rule applications. Let’s start by

discussing what business rules are.

10.1 Introduction to BRFplus

Business rules are part of every organization in almost every

process execution, whether in a promotional offer from a retail

store with “Buy 1, Get 1” signs or an airline offering “50% off a

business class air ticket on 35,000 accrued miles.” Business

rules thus speak about the operations and execution

diversions in a process, as well as define the behavior of the

critical systems running the enterprise.

Are these rules hard-coded in the software to bring a different

contextual behavior of the system? Well, that’s still the case in

some organizations for a few processes, but it’s certainly too

costly and too slow to do so. The business might even miss a

chance to apply such rules and benefit from it.

If you want to manage the deployment of the rules in a

seamless manner that is both easy and fast while cutting out

the entire software development lifecycle, then it’s time to get

introduced to business rules management systems (BRMSs). In

the context of SAP, we’ll be looking at BRFplus. In the past, we

used custom tables, constant table TVARVC, and custom

solutions to maintain the rules, which served the purpose of

maintaining the rules in some capacity. But, as the complexity

of rules grow, it becomes extremely difficult to make

architectural design easy to maintain and deploy. SAP came up

with BRFplus as the BRMS tool of choice.

BRFplus contains functionality for rule modeling, rule storage,

deployment, and monitoring. Let’s first discuss BRMSs in

general and then look at each of these components in turn.

10.1.1 Business Rules Management Systems

In the world where it’s important to be faster in bringing the

products to the market, it’s equally necessary to be faster to

manage any unforeseen scenarios in the business operations.

Organizations today want to be ahead of the race with their

competitors, thereby necessitating faster reaction time to the

changing needs of the business. This, in turn, is all about

steering the mission-critical processes that make the business.

The control to steer comes with the ability to manage the

business rules, those governing the process, on the fly.

BRMSs help you to do so. These are the systems that are used

to create, deploy, maintain, and monitor business rules. Once

the rules are maintained in the order of execution, you can

invoke these rules via the BRMS capability to steer the

processes. The invocation of these rules is coded only once by

the developer, and the rest of the operational behavior is

controlled by changing the rules on the fly, per the business

needs. Each BRMS will have environments for rule modeling,

rule maintenance, and a rule deployment and execution

engine.

Both the technical and nontechnical user groups are the target

audiences to use the various functions of the BRMS defined in

the previous statement. Business users as part of nontechnical

category of the audience are expected to make changes to the

rules on the fly to immediately affect the operational

processes.

10.1.2 Rule Modeling

The rule modeling component is the development studio for

the BRFplus developers. The BRFplus studio is also called the

BRFplus workbench, and it’s a Web Dynpro application, which

can be launched using Transaction BRF+ or Transaction

BRFPLUS.

Any rule modeling component needs to provide users with a

set of tools to design and develop the applications. The tools

should be placed to provide a better developer experience too,

so the layout of the development studio is also critical. Tools

such as application building blocks, simulation engine,

execution engine, version management, and lifecycle

management should be integral parts of the studio.

We’ll look at two very important aspects of the BRFplus rule

modeling component: the layout of the workbench and the

building blocks for the developers to build the whole

application. The rule execution engine is separately discussed

in the next section.

Layout

Figure 10.1 shows the user interface (UI) workbench for

creating, updating, and deleting the business rules. This UI

component can be accessed via Transaction BRF+ or

Transaction BRFPLUS.

Figure 10.1 BRFplus Landing Page

Let’s take a quick look at the layout of the landing page,

starting at the top left:

Workbench

This button gives you the flexibility to open an application,

resize the landing page to suit your needs, or add the

objects as favorites.

Tools

The options under this button are primarily driven by the

personalization button explained next. If the Simple user

mode is chosen in the personalization, the user will have

access to only the simulation tool. If Expert mode is

chosen, the user will have access to the entire set of tools

such as tracing, XML export and import, mass change,

simulation, application administration, and so on.

Personalization

At the far-right side of the landing page, this option gives

you the flexibility to define how the landing page should

look, what default values should it load with, and a range of

other controls for different smaller components of the

overall business rules build.

Help

This button is what you use to build integration with the

Help Center for giving specific documentation of your

business rules application.

Repository

This view shows all the different components of the build

such as data objects, expressions, rulesets, rules, functions,

actions, applications, and so on.

Catalog

This view is primarily for the business users to maintain the

rules in the decision tables. This is to make sure that

business users can chose to concentrate more on managing

the rules rather than getting exposed to the complexity of

business rule development artifacts.

Building Blocks

A typical BRFplus application looks like the one in Figure 10.2.

Figure 10.2 Typical BRFplus Application

Now, take a look at the different building blocks for the

business rules in Table 10.1.

Components Explanation

Application This is the topmost component in the

hierarchy (HRPBSAELIG, in our example) of the

different smaller components and hence is

the container for all the objects. It’s the

representation of the functionality that you

want to enhance using BRFplus rules.

Components Explanation

Data objects This is the most granular component in the

entire build of the business rules. Their

definition is primarily driven by what data

type they are associated with. A data object

can be the following:

An element (single attribute)

A structure (a list of other data objects)

A table (a list of structures)

Data objects become part of the context and

result for a decision table, which is explained

later in this table.

Expressions This is the computational engine to achieve a

certain business logic. There are many

expression types such as case expression,

Boolean, constant, decision tree, formula,

function call, procedure call, and so on.

The developer uses these expressions per

the requirements to develop complex

manipulation logic and rules. Indeed, there

must be input(s) given to the expression for

it to compute and produce a result per the

assigned result data object.

Components Explanation

Decision

table

expression

A decision table expression is where most of

the BRFplus applications are designed to

hold the business rules. The decision table

contains a set of rows and columns, and their

interaction enables each singular cell to

maintain the business rule data.

The initial columns form part of the context

to the rule, whereas the right most columns

are the result columns. Based on the

requirement, there can be one or more input

columns and one or more result columns.

The rule engine evaluates the decision table

expression from left to right and from top to

bottom to determine the matching row(s).

Based on the matching pattern configured,

the rule engine evaluates all the rows or

stops at the first match found.

Function This is the container where all the business

logic resides. This is the second layer after

the application that wraps all the other

objects in the business rule application

development exercise.

A function is the connecting link between the

calling application and the rules processing

framework.

A function has different execution modes.

The developer needs to choose correctly

based on the use case to be implemented.

Table 10.1 Building Blocks of a BRFplus Application

Additional Reading

Now that you have basic information on BRFplus and its

various components, we’d recommend that you take a look

at http://support.sap.com. It’s one of the best places to find

information, considering the enhanced UI and search

capabilities within it. You’ll need an S-User or a P-User to

login to the support portal. Once logged in, just search with

the keyword “BRFplus” using the search bar at the middle

top of the page. The search results are displayed on the

Services & Support page where there is a wealth of

knowledge articles, SAP Notes, Guided Answers, SAP Help

links, and so on. The search results page looks like

Figure 10.3.

Figure 10.3 SAP Support Portal: Search Results Page

Alternatively, the you can also look for the SAP PRESS book

www.sap-press.com/brfplus-business-rule-management-for-

abap-applications_2106/, which dives deep into every aspect

of the BRFplus framework.

10.1.3 Rule Execution Engine

http://support.sap.com/
http://www.sap-press.com/brfplus-business-rule-management-for-abap-applications_2106/

The rule execution engine is one of the main components of

any BRMS. While a developer builds a BRFplus application

using the BRFplus workbench, the invocation of the rules

during the business process execution are done using

dedicated application programming interfaces (APIs).

The API class for on-premises BRFplus applications is

CL_FDT_FUNCTION_PROCESS. If the business rules are built on SAP

Business Technology Platform (SAP BTP) via SAP Build Process

Automation, and if they are deployed to the on-premise SAP

S/4HANA system, then API CL_FDT_BRS_PROCESSOR can be used to

invoke business rules.

Class CL_FDT_FUNCTION_PROCESS has a method called PROCESS that is

the actual API for invoking. Let’s look at the API interface

design, which is detailed in Table 10.2.

Parameter

Name

Parameter

Type

Description

IV_FUNCTION_ID Importing This is the GUID of the function

building block. It can be found in

the BRFplus workbench under

the General tab of the artifact.

IV_TIMESTAMP Importing You specify a timestamp for the

function to be processed so that

the simulation of the system

behavior is as it would have been

at that particular point in time.

Parameter

Name

Parameter

Type

Description

IV_TRACE_MODE Importing By passing TRUE, you can record

the function execution in a trace

object for later reference. The

trace object is referred by the

EO_TRACE parameter (exporting

parameter).

ITS_ID_VALUE Importing This is a table of ID/value pairs

(ID/reference to value for each

context element). From a

performance perspective, this is

the most efficient way of

triggering BRFplus processing if

you call BRFplus only a couple of

times per session.

IO_CONTEXT Importing This is the reference to a context

object. You get an object

instance by calling

IF_FDT_FUNCTION~GET_PROCESS_CONTEXT

for a function instance. The

values can be set via method

IF_FDT_CONTEXT~SET_VALUE. Note

that passing context values to a

function with the help of this

parameter leads to a decrease in

performance compared to the

alternatives described earlier.

Parameter

Name

Parameter

Type

Description

EA_RESULT Exporting This is a variable of a type that is

compatible with the result data

object of the BRFplus function.

You can get an ABAP data object

of this type (a reference) by

calling method

CL_FDT_FUNCTION_PROCESS

=>GET_DATA_OBJECT_REFERENCE.

EO_TRACE Exporting This is the reference to the trace

object used for recording trace

information, depending on the

setting of parameter

IV_TRACE_MODE.

CT_NAME_VALUE Changing This is a table of name/value

pairs (name/reference to value

for each context element). For

best performance, first transfer

the values into the internal

format of BRFplus. This can be

accomplished by calling

CL_FDT_FUNCTION_PROCESS

=>GET_DATA_OBJECT_REFERENCE.

Table 10.2 Method Documentation in the Class

10.2 Integrating BRFplus

Applications in SAP Business

Workflow

Now that you know the ways to build BRFplus applications,

let’s move on to discuss its integration with SAP Business

Workflow. Here, we’ll take a simple demo scenario of a

BRFplus application where the bank details of a customer

are identified based on the company code and customer

number as input criteria. This application will be invoked in

a workflow for further processing.

10.2.1 BRFplus Application Overview

If you’re interested in using this demo scenario for hands-on

practice, you need to develop the BRFplus application as

depicted in Figure 10.4. The decision table will have

company code and business partner as the context

variables and the bank account ID as the result variable.

Figure 10.4 BRFplus Demo Scenario Application

10.2.2 Attach a BRFplus Function in a

Business Workflow

In the business workflow, a BRFplus function is attached

using the Activate step. Before you start to attach the

BRFplus function, you’ll need its ID. The ID can be found in

the BRFplus workbench under the General section of the

function artifact, as shown in Figure 10.5.

Figure 10.5 BRFplus Function ID

Once you have the function ID, you can start to create a

business workflow. For that, go to Transaction SWDD. The

initial screen looks like Figure 10.6.

If you’ve opened the transaction earlier, then the previously

opened workflow loads by default. If so, then click on the

Create New Workflow button at the top left of the screen.

Alternatively, use (Ctrl)+(Shift)+(F5) to create the new

workflow instance.

Figure 10.6 Transaction SWDD View

On the middle section of the screen, you see the workflow’s

initial graphical model. Double-click on the Undefined step,

and you’ll be prompted with a popup to choose the type of

workflow task that needs to be created (see Figure 10.7).

Figure 10.7 Create New Task for the Activity Type

Choose the Activity option, and the setup screen opens, as

shown in Figure 10.8.

Click on the Display Task button (next to the Task field),

and choose Include BRFplus Function from the dropdown

list (see Figure 10.9).

Figure 10.8 Activity Step

Figure 10.9 Include BRFplus Function

The popup screen shown in Figure 10.10 appears. Enter the

BRFplus Function ID that you retrieved earlier in

Figure 10.5.

Figure 10.10 Include BRFplus Function ID

In addition, enter the New Task Name, and the framework

automatically decides on the container elements to be

created, both on the workflow and task container side. This

is based on the signature of the function defined in the

BRFplus workbench. Figure 10.11 depicts the popup that

appears proposing the mapping between the container

elements.

Figure 10.11 Mapping Proposal between BRFplus Function and Workflow

Container Elements

When you accept the proposal of the mapping, you’ll see

that the task ID is created, and the description is also set as

the GUID of the function. The agent assignment is also not

required as the task is converted to a background task, as

shown in Figure 10.12. The BRFplus button on the task

view gives navigation to the BRFplus function in the BRFplus

workbench.

Figure 10.12 Task View after Attaching BRFplus Function

Click on the green checkmark button on the screen to take

you back to the graphical model view of the workflow with

the activity step added on it. Click on Save. You’ll be asked

to provide a name to identify the workflow in a small popup,

as shown in Figure 10.13.

Figure 10.13 Name Your Workflow

Enter an abbreviation in Abbr., enter the descriptive Name,

and choose OK on the popup screen. Then, click on

Activate. On activation, a workflow ID (WS*) will be

assigned per the configuration done in the system in

Transaction SWU3.

10.2.3 Executing the Workflow

To demonstrate the invocation of the BRFplus function,

you’ll run the workflow and provide values to the company

code and business partner workflow container elements. To

start with, let’s look at the Workflow Builder view after the

steps to attach a BRFplus function have been completed

(see Figure 10.14).

Figure 10.14 Workflow Builder View after Activation

In the left bottom section, where we see the Step Types

That Can Be Inserted view, you need to change the view

to see the workflow container by first clicking on the

dropdown button and then selecting Workflow Container,

as shown in Figure 10.15.

Figure 10.15 Steps to Get the Workflow Container View

You’ll see the COMPANY_CODE, BUSINESS_PARTNER, and

BANK_ID workflow container elements. Note that these

container elements were auto-proposed while you were

attaching the BRFplus function ID to the activity step (refer

to Figure 10.11).

You now need to change the container element’s properties

so that BUSINESS_PARTNER and COMPANY_CODE are enabled as input

parameters and BANK_ID is enabled as the output parameter.

Follow this path to change attributes for each of the

container elements: Double-click each of the container

elements to open the popup screen, and navigate to the

Properties tab. Select the relevant checkbox

(Import/Export) in the Parameter Settings section for

the elements (see Figure 10.16). Click Confirm on the

popup screen or press (Enter).

Because you’ve changed the workflow, don’t forget to

activate it one more time.

It’s time to test the workflow. Press (F8) to bring up the Test

Workflow screen with all the relevant workflow container

elements available to feed in the data. Two container

elements, COMPANY_CODE and BUSINESS_PARTNER, are

also available, as shown in Figure 10.17.

Figure 10.16 Change Container Element View

Figure 10.17 Test Workflow View

To do a positive test, put the values in the container

elements that match with the decision table entries you’ve

maintained in the BRFplus application developed earlier in

Figure 10.4. For quick reference, take a look at Figure 10.18.

Figure 10.18 Mapping Values from the BRFplus Decision Table

After entering the matching values for the input container

elements COMPANY_CODE and BUSINESS_PARTNER,

press (F8) to execute.

Following are the steps depicted in Figure 10.19 to test the

workflow and see the execution result:

 Press (F8) on the Test Workflow view.

 Once you see the Task ID generated in the message

view of the screen, click on the Workflow Log

toolbar button.

1

2

 You’ll be taken to the Workflow Log view of the

workflow engine. Because you need to look at the

workflow container element BANK_ID, switch to the

Technical Details view of the workflow by pressing

(Shift)+(F9).

 BANK_ID is shown in the container element at the

task level as well as at the workflow level. The value

can be verified with the value that is maintained in

the BRFplus decision table.

Figure 10.19 Sequence of Steps to Execute and Validate the Result

3

4

10.3 Summary

In this chapter, we discussed the need for a rule engine for

enterprises and how they can be used in various business

process operations. We looked at BRFplus from SAP as the

tool of choice for business rule authoring, maintenance, and

deployment by diving deep into understanding multiple

building blocks to create a business rule application.

We used our understanding of the business rules framework

to develop a sample BRFplus application and then showed

how it can be integrated with a business workflow. This

chapter also helps you understand how you can decouple

the business rules from the main processing logic using rule

engines and help bring faster deployment of the changes for

ever-changing business needs.

11 Integrating Workflows

with User Interface

Applications and External

Applications

This chapter gives you an overview of integrating

workflows with user interface (UI) applications such

as My Inbox. In real time, approvers access workflow

work items in these UI applications and can take the

appropriate actions. We’ll explain how to navigate

some detail pages and other apps from the My Inbox

tile, as well as various My Inbox tile variants,

including how to configure those tiles in detail.

We’ve used different types of UI worklist applications in SAP

over time to check and take action on workflow work items

—and these applications have improved a lot. For example,

in SAP ERP systems, all classical workflows are tightly

integrated with Business Workplace (Transaction SBWP). All

work items are available in Transaction SBWP, and

approvers open the work items and can act on them.

When SAP released SAP Enterprise Portal, work items were

available in frontend applications such as the universal

worklist. Agents no longer need to go to Transaction SBWP

to process work items; they can directly work on work items

in the universal worklist. Now, we have the SAP Fiori app My

Inbox, in addition to other options.

This chapter provides an overview of the My Inbox app,

variants of the My Inbox app, and how to set up the

scenario-specific My Inbox tile, which is a very common

scenario in real time. We’ll also explain the steps to

configure navigational links to navigate to other external

Web Dynpro applications and SAP Fiori apps from My Inbox.

11.1 My Inbox App Overview

SAP provides the modern SAP Fiori and SAPUI5 application

called My Inbox (see Figure 11.1), that is, the workflow

inbox, which is more lightweight, mobile, and compatible

than earlier worklist applications in the intelligent enterprise

system. By using this, you can process your standard or

custom workflow tasks based on the decision options

defined anytime, anywhere. You can use the My Inbox app

with SAP Business Suite, SAP Business Suite powered by

SAP HANA, or SAP S/4HANA 1511 onward. However, it has

many additional features starting with SAP S/4HANA 1610.

You can connect My Inbox with SAP ERP, older SAP Supplier

Relationship Management (SAP SRM), SAP Customer

Relationship Management (SAP CRM), SAP Business Process

Management (SAP BPM), SAP S/4HANA, and so on, so you

can access all different system-specific tasks in a single

worklist.

Figure 11.1 My Inbox App

My Inbox Variants

There are various My Inbox tile variants provided by

standard SAP, and you have to enable those tiles per your

business requirements:

All Items Inbox

The preconfigured All Items tile in the SAP Fiori

launchpad enables you to easily process all your tasks.

You must add the All Items tile from the catalog to

view this tile in SAP Fiori launchpad.

Scenario specific inbox

My Inbox also offers to customize your own workflow

scenarios and create scenario-specific tiles in the SAP

Fiori launchpad.

Outbox

You can configure the Outbox tile, which will you

enable to view all completed and suspended tasks.

My Inbox has many features, some of which are listed here:

You can process tasks from SAP Business Workflow, SAP

BPM, older SAP SRM servers, and third-party providers.

You can view and add comments.

You can view workflow and task logs.

You can define decision options you want to display

(Approve, Reject, Return, etc.).

You can view, add, or delete attachments.

You can navigate to relevant apps.

You can create and manage substitution rules to manage

the tasks in your absence.

You can filter the tasks based on substation users.

You can browse, sort, filter, and group tasks requiring

action.

You can add additional attributes that provide additional

information about the task.

11.2 Workflow Task Integration with User Interface

Applications

As explained in Section 11.1, the My Inbox – All Items app is a preconfigured app

available in the system. You can get relevant roles per the SAP Fiori apps reference

library assigned to your ID and use the tile in the SAP Fiori launchpad. Apart from this,

you have to take certain steps to enable the scenario-specific My Inbox tile. Follow

these prerequisites to use the My Inbox tiles:

SAP Business Workflow should be active in the backend.

SAP Fiori launchpad should be configured and available.

All relevant My Inbox task gateway OData services and Internet Connection

Framework (ICF) nodes should be active.

The following sections provide you with all the details you need to configure the

scenario-specific My Inbox tile in the backend system and set up the SAP Fiori tile

details. We’ll explain launching an SAPUI5 application from a workflow task in the My

Inbox app as well.

11.2.1 Set Up a Scenario-Specific My Inbox Tile

Your organization may have specific requirements that necessitate the grouping of work

items related to a specific process area/business function. In this case, using the

scenario-specific My Inbox tiles in SAP Fiori is an option to group related work items

instead of using the My Inbox – All Items tile.

For example, let’s say that the procurement department wants to separate the My

Inbox tile, which will display only procurement-related workflow tasks. You can follow

these steps to create a scenario ID and then create the tile in the SAP Fiori launchpad

designer to provide to the user:

1. Create a scenario ID and consumer type via menu path ABAP Platform • SAP

Gateway Service Enablement • Content • Task Gateway • Task Gateway

Service • Scenario Definition.

2. As shown in Figure 11.2, click on the New Entries button, and create a new

scenario ID using the details mentioned in Table 11.1.

Figure 11.2 Scenario Definition

Fields Description

Fields Description

Scenario

Identifier

Enter a new scenario ID.

Scenario

Display

Name

Enter a display name for the scenario.

Scenario

Order

Not relevant for My Inbox

Service Enter “/IWPGW/TASKPROCESSING”.

Version Enter “2”.

EntitySet

External

Name

Enter “Task”.

Property

External

Name

Enter “TaskDefinitionID”.

Default

Sort by

Property

Enter the property you want to sort the work items in the list screen

of the app. If you don’t update any value, the default value is

CreatedOn.

MassAction Select this checkbox if you want to, for example, approve or reject

several tasks of the same type at the same time.

Class for

Scenario

Count

Leave this empty. Note that if the scenario isn’t part of the SAP

Business Workflow engine or SAP BPM, and you want to see the

number of tasks pending for this scenario, enter the name of the

class that was implemented by the /IWWRK/IF_TGW_SCENARIO interface in

the backend system.

Quick Act. Select the Quick Act. checkbox to enable quick approval of

workflow items by swiping on the screen. This field is only applicable

when you have a touch screen device.

Table 11.1 Scenario ID Details

3. Save these details, and create a new scenario ID.

4. Next, assign the Consumer Type by selecting a newly created scenario ID and then

clicking on Assign Consumer Type to Scenario ID in the Dialog Structure on

the left, as shown in Figure 11.3 .

5. You can choose consumer types of DESKTOP, MOBILE, and TABLET per your

application and business requirements.

1

2

Figure 11.3 My Inbox Scenario ID Configuration

6. Optionally, you can assign consumer type and scenario to Transaction PFCG roles.

That is, this scenario will be available to users who have at least one of the relevant

roles assigned. You can follow these steps to assign a role:

Select the consumer type row, and click on Assign Role to Consumer Type and

Scenario.

Choose New Entries.

In the Role column, assign relevant roles per your business process.

Save your entries.

7. Next, per your business requirement, you can assign single or multiple tasks for the

same scenario. For multiple tasks, make sure you follow the same steps for each

task.

8. Choose Scenario Definition in the Dialog Structure, and select the row

containing your approval scenario.

9. As shown in Figure 11.4, then choose Task Definition for Scenario in the Dialog

Structure.

10. Choose New Entries.

11. Enter the correct SAP Alias System for the task ID.

12. Enter the Task Type ID for your approval workflow.

13. Save your entries.

Figure 11.4 Assigning Task IDs to a Scenario ID

This is the required configuration to be done in the backend system for the scenario-

based My Inbox app. Once this is done, you have to log in to the SAP Fiori designer and

configure a scenario-specific dynamic tile in the relevant business catalog and assign

that tile to the user.

Per your SAP Fiori launchpad configuration, you can follow either the traditional

approach or implement the spaces/pages concept to create this dynamic tile. Whichever

you choose, the tile creation process is more or less the same. Follow these steps to

configure this tile:

1. Log in to SAP Fiori, and open the relevant catalog, which is shown in Figure 11.5.

2. Click on the Add Tile icon.

3. Create the tile by selecting the App Launcher – Dynamic option, which is shown in

Figure 11.6.

Figure 11.5 Creating the SAP Fiori Scenario Tile

Figure 11.6 Scenario Dynamic Tile

4. Enter all dynamic tile details into the screen shown in Figure 11.7, as described in

Table 11.2.

Figure 11.7 Configuring a Scenario-Specific Tile

Field Description

Title Enter a meaningful title for your scenario-specific app.

Subtitle Enter a meaningful subtitle for your scenario-specific app.

Icon Use any of the available icons.

Field Description

Service

URL

Enter

“/sap/opu/odata/IWPGW/TASKPROCESSING;mo;v=2/ScenarioCollection?

$filter=key eq '<your scenario identifier>'.”

Refresh

Interval in

Seconds

Enter the interval in seconds; this refers to the number of seconds

after which data is refreshed: 0 indicates that there should be no auto-

refresh.

Semantic

Object

Enter the relevant name of the semantic object or workflow task.

Action Enter “DisplayInbox”.

Parameters Enter “scenarioId=<ID of your scenario>&listSize=<number of items

you want to display on your list screen>>&showAdditionalAttributes=

<true or false>.” A few notes on the details of this:

ScenarioID is mandatory.

listSize is optional, and the default is 100.

Use showAdditionalAttributes=true if you want to display custom

attributes in the list view.

Table 11.2 Tile Details

5. Create a target mapping for this tile that is similar to the My Inbox – All Items tile

shown in Figure 11.8, and then complete the tile configuration.

Figure 11.8 Target Mapping

Table 11.3 gives all the details about target mapping.

Field Details

Semantic

Object

Enter the semantic object that was mentioned in the tile details.

Action Enter the action mentioned in the tile details.

Field Details

Application

Type

Choose SAPUI5 Fiori App.

Title Enter a meaningful title, that is, “My Inbox”.

URL Enter Transaction SICF node details, for example,

“/sap/bc/ui5_ui5/sap/ca_fiori_inbox”.

ID Enter the My Inbox SAPUI5 application component ID, that is,

“cross.fnd.fiori.inbox”.

Table 11.3 Target Mapping Details

11.2.2 Create and Maintain User Attributes: Adding Additional

Attributes for a Task

In general, the standard My Inbox app displays important details in its Information

pane. However, SAP enables you to add even more additional details in the information

pane if required, as shown in Figure 11.9. This is useful if you need to add more details

for a task, as we’ll discuss in this section.

Figure 11.9 Additional Details

Perform the following steps to add additional details:

1. Go to Transaction SWF_USER_ATTR in the backend system.

2. Enter Use Case Filter “WF_INBOX_DC”, and select and execute the Customizing

checkbox, as shown in Figure 11.10.

Figure 11.10 Transaction SWF_USER_ATTR

3. Click on the Create New Entry button and maintain the user attributes for the

required task or workflow per Table 11.4. Once maintained, you can see those

details in the main screen, as shown in Figure 11.11.

Field Description

Task/Workflow Enter the required task ID or workflow ID

Step ID This has to be entered if you’ve provided a workflow ID.

Use Case Select WF_INBOC_DC.

Description Enter the label to be displayed in My Inbox.

Expression Choose the value to display. Use the context-sensitive help to

display the field. You can select any of your selected task context

variables.

Table 11.4 User Attributes

Figure 11.11 User Attributes Task Details

As shown in Figure 11.12, we’ve maintained the last four attributes for task

TS90000007, which you can see displayed in the My Inbox app.

Figure 11.12 My Inbox: Additional Details

4. You can reindex the runtime data for any existing work items by clicking on the

Generate button after maintaining these user attributes (see Figure 11.13). This is

very useful for old work items that are lying in production environments.

Figure 11.13 Reindexing User Attributes for Old Work Items

5. After reindexing the runtime data for this sample task, you have a newly added user

attribute in the My Inbox app shown in Figure 11.14.

Figure 11.14 Updated User Attributes

11.2.3 Launching SAPUI5 Applications from Workflow Tasks

There are many scenarios in which you want to navigate to another application from My

Inbox app. For example, you might be checking the summary of purchase requisition

details in the My Inbox app and want to open the Purchase Requisition app to review all

the details. This is a common scenario in many approval flows. SAP has provided

different ways to integrate external applications with My Inbox app.

Task and object visualization parameters can be maintained in the following

transactions:

Transaction SWFVMD1 (client-independent configuration)

Transaction SWFVISU (client-dependent configuration)

Generally, you can define two types of use cases by using these transaction codes:

Universal worklist

My Inbox app

Transaction SWFVISU doesn’t support both use cases together, so you need to decide

which use case should be supported. If both use cases have to be supported, then

Transaction SWFVMD1 must be used. The system uses the configuration of Transaction

SWFVMD1 if available and uses the configuration of Transaction SWFVISU as a fallback.

The task gateway reads task visualization parameters in the following order:

1. Transaction SWFVMD1 configuration is accessed first.

2. If the Transaction SWFVMD1 configuration doesn’t exist, then Transaction SWFVISU

parameters are used.

3. If both Transaction SWFVMD1 and Transaction SWFVISU configurations are missing,

then standard (web GUI) visualization parameters are used.

You can follow these steps to launch SAPUI5 applications from the My Inbox app:

1. Go to Transaction SWFVISU, as shown in Figure 11.15.

2. Select Task Visualization in the Dialog Structure, and click on New Entries to

maintain task details. You can find all task-relevant details in Table 11.5.

Task

Visualization

Parameter

DetailsTask

Visualization

Parameter

Details

Task Enter the required task ID.

Visualization

Type

A visualization type has a list of parameters that can or must be

set. There is an option to use placeholders, which allows you to

provide task instance data or symbols. Based on your

system/requirement, choose the correct visualization type from

dropdown box.

Table 11.5 Task Visualization

3. Save the task details.

4. Choose a task ID in the Task Visualization table, and click on Visualization

Parameter in the Dialog Structure, as shown in Figure 11.16.

5. You can see all relevant parameters per the visualization type chosen in the task

details. You’ll find the most common types such as Intent-Based Navigation and

My Inbox Generic Application, which you can use in the My Inbox configuration.

Figure 11.15 Transaction SWFVISU

Figure 11.16 Visualization Parameter

6. As shown in Figure 11.17, you have to maintain the required values in the

visualization parameters for intent-based navigation. These values are listed in

Table 11.6.

Figure 11.17 Visualization Parameters: Intent-Based Navigation

Visualization

Parameter

Visualization Parameter Value

ACTION Enter the correct action of your target application.

SEMANTIC_OBJECT Enter the correct semantic object name of your target

application. Check semantic objects details in the SAP

Fiori app reference library or in the catalog.

QUERY_PARAM00 Enter the parameter value.

QUERY_PARAM01 . . .

QUERY_PARAM09

Enter the parameter values.

Table 11.6 Intent-Based Navigation

7. Define visualization parameters SEMANTIC_OBJECT and ACTION. Parameters

QUERY_PARAM00 . . . QUERY_PARAM09 are used to define the application path,

including the instance data and system data. The URL generation resolves the

instance and system data for each parameter and concatenates the result string

using the numbering of the parameters.

Here’s an example: #<SEMANTIC_OBJECT>-<ACTION>?<QUERY_PARAM00>&<QUERY_PARAM..>

8. Visualization type My Inbox Generic Application is another commonly used

visualization type in My Inbox. As shown in Figure 11.18, you have to maintain all My

Inbox–relevant parameter values listed in Table 11.7.

Figure 11.18 Visualization Parameters: My Inbox

Visualization

Parameter

Visualization Parameter Value

APPLICATION_PATH Enter the application path.

COMPONENT_NAME Enter the application component name, for example:

“cross.fnd.fiori.inbox.annotationBasedTaskUI”.

QUERY_PARAM00 Maintain all required parameters, for example:

“service=/sap/opu/odata/sap/FINCS_JRNLENTR_POST_SRV”.

Visualization

Parameter

Visualization Parameter Value

QUERY_PARAM01 . . .

QUERY_PARAM09

Enter the parameter values.

SCHEME Enter the scheme of the URL, for example, “http”, “https”,

“sapui5”, and so on.

Table 11.7 My Inbox Generic Application

9. You can use the expressions and symbols in Table 11.8 when entering parameters.

The basis of a workflow expression is always the task container. The leading object is

stored in the generic container element _WI_OBJECT_ID, which is available in each task

container.

Expression

Name

Semantic

{SYSTEM} System ID (SY-SYSID)

{CLIENT} Client (SY-MANDT)

{WORKITEM} Work item ID

{TASK} Task definition ID, for example, TS78500100

{OBJKEY} Business object instance ID ({&<Workflow Expression>&}) and result of

workflow expression (e.g., &_WI_OBJECT_ID.NAME&)

{SYMBOL01} . . .

{SYMBOL05}

Configured value in Transaction SWPA

Table 11.8 Expressions and Symbols

11.2.4 Launching Web Dynpro Applications from Workflow Tasks

Similar to SAPUI5 applications, you can configure other applications as well to launch

from the My Inbox app. You need to follow the steps discussed in this section in

Transaction SWFVISU to navigate to a Web Dynpro application.

As shown in Figure 11.19, follow the same steps as mentioned for SAPUI5 applications,

and change parameter values as mentioned in Table 11.9.

Figure 11.19 Web Dynpro Visualization Parameters

Visualization Parameter Visualization Parameter ValueVisualization Parameter Visualization Parameter Value

APPLICATION Enter the Web Dynpro application name.

DYNPARM Enter all Web Dynpro application parameters.

NAMESPACE Enter “SAP”.

Table 11.9 Web Dynpro Visualization Parameters

After you maintain these settings in the backend, then you can navigate to the target

app in the My Inbox app by clicking on the Open Task button, as shown in Figure 11.20.

Figure 11.20 My Inbox Open Task

11.3 Email Templates in SAP

S/4HANA

Flexible workflows are the recommended approach in SAP

S/4HANA. This flexible workflow framework is tightly

integrated with the email templates approach. To align with

SAP’s “keep the core clean” approach, you always have to

find the ways to minimize logins to SAP GUI and use

classical ways to develop artifacts.

In SAP S/4HANA, you can create email templates using the

Maintain Email Templates app. Almost all standard flexible

workflows send email notifications by using these email

templates out of the box. All you need to copy the standard

template into the customer namespace by following

prescribed naming standards, and then the standard

framework will send emails to assigned recipients.

You can find complete details about these templates and the

Maintain Email Templates app in Chapter 16, Section 16.2.

11.4 Integrating External

Applications with SAP Business

Workflow

Nearly all organizations have a hybrid environment with

SAP, non-SAP, cloud, and non-cloud systems and solutions.

Companies require integration between SAP and Non-SAP

systems to support the new wave of automation and

digitalization. There are different types of integration

options (e.g., Simple Object Access Protocol [SOAP], REST,

OData, etc.) available to establish communication between

SAP and non-SAP systems to exchange the data through

SAP Integration Suite. The preferred way of exchanging data

between systems is through a whitelisted API. Whether it’s

SAP Build Process Automation, flexible workflow, or classical

workflow, you need to connect with other systems through

whitelisted APIs, which is a basic requirement to make your

code cloud ready.

Another use case in today’s scenarios is to integrate the

workflow with Microsoft Outlook types of mail applications.

End users have to check task details in their mail and take

appropriate action directly from their mailbox rather than

logging in to the system. SAP Business Technology Platform

(SAP BTP) provides this kind of functionality seamlessly

using SAP Build Process Automation techniques with any

external mailing applications. This includes the no-code/low-

code approach to build more robust automations. You need

to explore SAP BTP if you get any such kind of requirement

in real life rather than implementing any old traditional

approaches.

You can find the few latest SAP technologies in Table 11.10

for integrating external systems with SAP Business

Workflow.

Technology Details

SAP

Integration

Suite

SAP Integration Suite is an integration

platform as a service (iPaaS) that helps you

quickly integrate on-premise and cloud-

based processes, services, applications,

events, and data. SAP Integration Suite

provides prebuilt integration flows managed

and updated by SAP, as well as tools for

designing, publishing, and managing APIs.

SAP Build

Process

Automation

SAP Build Process Automation allows you to

simplify automation with visual drag-and-

drop tools. It enables both citizen and

professional developers to easily digitalize

their workflows without writing code. There

are hundreds of prebuilt content packages

and connectors you can use to jump-start

your automation projects and save

development time. You can easily automate

approval flows using SAP Build Process

Automation tools and integrate seamlessly

with Outlook, Excel, and so on.

Technology Details

SAP

Business

Accelerator

Hub

This is the first point of contact to search or

find any released APIs. You can use this to

discover, explore, and test the different

types of content available in SAP Business

Accelerator Hub to accelerate integration

and extension and help you in your digital

transformation journey.

Table 11.10 Integration Technologies

11.5 Summary

After reading this chapter, you should be able to set up the

My Inbox – All Items and the scenario-specific My Inbox

tiles, and you should be able to configure the launch of

SAPUI5/Web Dynpro applications from the My Inbox app.

Even if you’re not a technical expert, you can configure the

My Inbox app and use it for all approvals.

In the next chapter, we’ll move on to discussing migrating

SAP ERP workflows to SAP S/4HANA, starting with brownfield

projects.

12 Migrating SAP ERP

Workflows to SAP S/4HANA

This chapter provides an overview of the different

migration options to SAP S/4HANA (greenfield,

selective data transition, and brownfield). For

brownfield conversions, you’ll learn how to analyze

the impact of migration on standard and custom

workflows. For selective data transition and

greenfield implementations, we’ll discuss whether

workflow migration is required and how to handle

migration of open workflows, user data, and office

settings from SAP ERP to SAP S/4HANA.

SAP S/4HANA is the new enterprise resource planning (ERP)

product suite that runs on the SAP HANA in-memory

database platform. It enables a large volume of data to

process in real time, making it suitable for modern data-

driven intelligent businesses. SAP S/4HANA provides a

simplified data model, enhanced user experience (UX),

improved real-time reporting and analytics, industry-specific

solutions, new innovations, process enhancements, cloud

integration, capability to integrate with modern technology,

and a backbone for digital transformation. SAP has stopped

all innovations in earlier SAP ERP products, and mainstream

maintenance of SAP ERP will end in 2027. SAP S/4HANA is

the new future ERP product suite, so all organizations have

started moving from SAP ERP to SAP S/4HANA. SAP also

offers SAP Business Technology Platform (SAP BTP), which is

a technical platform with collective integrated technologies

and services where extended business applications and

solutions can be built. The SAP landscape, product portfolio,

and solution options have changed a lot with the

introduction of SAP S/4HANA and SAP BTP. It’s important to

note that migrating from SAP ERP to SAP S/4HANA can be

complex. In the workflow context, there are now multiple

ways to build, and you should be able to decide the best

option during SAP ERP to SAP S/4HANA migration.

In this chapter, we’ll discuss different options for migrating

from SAP ERP to SAP S/4HANA. We’ll evaluate each option

and recommend the option most suitable for a customer

scenario based on requirements and current market trends.

Then, we’ll deep dive into each option in the context of

workflow to find out how workflows can be migrated from

SAP ERP to SAP S/4HANA for each option of migration. We’ll

talk about pre-migration activities and during migration

activities, common challenges, and watchout points to help

you prepare for any SAP S/4HANA migration activities. We’ll

only discuss workflow-related activities and not all the

activities required in general for any SAP ERP to SAP

S/4HANA migration.

12.1 Migration Options from SAP

ERP to SAP S/4HANA

SAP S/4HANA is the successor of the SAP ERP product suite.

This product is totally restructured with new technologies

and more business-oriented functions and technical

capabilities. The technical architecture surrounding SAP

S/4HANA has changed quite a bit where business application

logic and technology are residing in a different layer with

string coupling. The SAP user interface (UI) has gone

through drastic changes where it’s now totally based on SAP

Fiori, and SAP GUI–based transactions are slowly being

phased out. All new applications are built with cloud-based

architecture, with web-based UIs, and on SAP BTP. In this

changing business application and technology context, we

have to revisit our implementation approach for workflows.

This book contains all the supported technologies in the

workflow area: both classical and new workflow

technologies. The right technology should be selected for

customer-specific scenarios.

In the SAP S/4HANA journey, there are three journey paths,

as follows:

Brownfield project

This category includes organizations that want to do a

technical migration to SAP S/4HANA. They want to

transform their ERP system in phases slowly by building a

technical backbone first without changing the process.

They want to keep the change management to a

minimum. Normally, the organizations have recently

implemented SAP applications or are large organizations

with a system supporting multiple countries globally and

may prefer to have less disturbance in their stabilized

system. Their business process is well aligned and stable

in the system, and there is no major business driver to

change the business process or target operating model

immediately. This kind of organization prefers a technical

migration to SAP S/4HANA that is known as brownfield

project.

Greenfield implementation

This type includes organizations that may have

implemented SAP ERP a long way back. Their business

process isn’t properly aligned in the system, or they may

be starting a new line of business. Those organizations

want to revisit the system implementation and build new,

aligned with their business processes along with

leveraging new technologies. They may go for a new SAP

S/4HANA implementation. We call this type of SAP

S/4HANA journey a greenfield implementation.

Selective data transition

The third approach is a mix of the greenfield and

brownfield approaches and is known as a selective

migration/smart migration/hybrid migration. Each

organization has come up with a different name for this

approach. Most of the existing investment is kept with

some transformation capability. In this approach, a system

is copied from an existing SAP ERP system. Then, the data

is removed from the system, and only custom code and

configuration is left in the system. The change-based

configuration is aligned with the transformations needed

for future business. Then, the data is moved to this

system. Data migration happens in a table-to-table

update mode. During the data migration, the data is

changed on the fly and aligned with the new

configuration. In a typical brownfield scenario, you can’t

change certain types of finance configuration because

data is already there. This approach moves the data later,

so it has the flexibility to overcome that limitation. This

can provide a solution for data enrichment, cleanup

system, business transformation, and reduced downtime.

This approach is getting popular today because data is

migrated directly from table to table, the SAP Partners

technically can’t do this kind of data migration. There are

some specific companies that have been working in this

area for a long time, so they are involved in this kind of

SAP S/4HANA migration approach.

Table 12.1 provides the key purpose of the different kinds of

SAP S/4HANA migration approaches in the market.

Approach Purpose

System conversion

(brownfield)

Modernize the platform with

minimum business process change:

In-place technical system

conversion with minimum end user

impact

Adoption of new innovations at the

client’s own speed

Main goal of technical platform

modernization

Approach Purpose

New

implementation

(greenfield)

Reengineer with a new

implementation or reimplementation:

Reengineering and process

simplification based on latest

innovations

Implementing innovative business

processes with preconfigured

content on a new platform

Performing initial data load

Retiring an old landscape

Selective

transformation

(copy, transform,

deploy)

Value-driven process change in a

modernized platform:

Clean up existing system from a

data and customization

perspective.

Clear up a lean and clean system

Reuse the existing investment and

change only where business value

is identified

Move the selected data needed for

business operation to keep the

system lean

Table 12.1 Different Options of Moving from SAP ERP to SAP S/4HANA

We’ll now discuss these three implementation approaches in

the workflow context only.

12.2 Conversion Projects

(Brownfield)

An SAP S/4HANA technical conversion is similar to any

upgrade project, but it’s much more complex than an SAP

upgrade because it brings changes and new things both in

technology and business processes. We’ll first discuss how

to handle the system upgrade. Then, we’ll extend the

discussion to SAP S/4HANA conversion.

12.2.1 Handling System Upgrades for

Standard and Custom Workflows

Like upgrade impacts any other area, there can be an

impact both from the design and runtime instance

perspective for workflow objects. The impact will be higher if

the current system version is lower. There is a higher

probability of impact if you’re upgrading your workflow from

SAP version 4.7X or lower. Following are some minimum

recommendations that you should be following to make your

system upgrade successful and to cause minimum impact to

end users:

Plan the upgrade activities well ahead of time.

Like any other major system change, you have to start

planning your activities related to analysis and upgrade.

The entire planning can be categorized under three main

pillars: analysis of impact before upgrade, pre-upgrade

and mid-upgrade activities, post-upgrade activities, and

end user support.

Perform pre-upgrade analysis.

Understand what is changing in the upgrade and the

known issues. Identify the SAP Notes that talk about the

upgrade impact on the workflow. Work with your Basis

team to get the list of SAP Notes that gets implemented

as part of the upgrade. The Basis team can extract the

SAP Notes based on the source and target SAP version.

You should also ask to get the list of side effect SAP Notes

for the target version you’re going to. There will be a very

high number of SAP Notes, and it won’t be possible to

check every SAP Note in that list to check workflow

impact. Look for the SAP Notes with component BC-BMT-

WFM. This will help you filter out the SAP Notes related to

workflow. You should also look for other consulting SAP

Notes that may not be part of that list. Search for

“Collective SAP Note for Upgrade” to provide you some

guidance on how to handle the workflow update.

Table 12.2 lists some SAP Notes that will be helpful in an

upgrade scenario.

SAP

Notes

Description

1068627 Composite Note about Workflow Upgrade

573656 Collective Note Relating to Archiving in

Workflow

910573 Structures with Incompatible Changes

3200555 Workflow Syntax Errors after Upgrade

215753 Upgrade: Old Workflows Hang

SAP

Notes

Description

2665105 Workflow Start/Restart Failure after Support

Package Upgrade - Binding Failure

2152421 Workflow Function Modules Aren’t Working as

Expected after System/Support Package

Upgrade

2760822 Workflow Customizing Is Changed after

Upgrade

2075962 Binding and Container Element Errors in

Workflow Runtime after Upgrading

1058159 Elements Are Missing in the Workflow

Container

939489 Workflow: Container Elements Missing after

an Upgrade

1228836 Compatibility of Conditions with Date/Time

Constants

1732734 Binding Errors in Workflow Runtime after

Updating your Basis Support Pack or

Upgrading

Table 12.2 Key SAP Notes Related to the Impact of the System Upgrade on

the Workflow

Complete the running workflow instance.

Most of the workflow issues occur in the existing in-

process work items after an upgrade. A workflow

maintains a lot of runtime information. If the workflow

container element structures are changed a lot or some

existing elements aren’t compatible in the new SAP

version, then there may be a chance an old workflow may

give some errors. There is no definite reason the workflow

will give errors after the upgrade, but we’ve seen some

workflows errored out after the upgrade, so it’s

recommended to complete all the existing workflows.

That being said, we all know it’s not practically possible to

complete all workflows in the system. You have to

reasonably try to complete as many as possible. There

will be some long-running workflows, so it won’t be

possible to close all. Look for the workflows where the

lifecycle is shorter or the technical workflows such as IDoc

error handling workflows. In addition, look for workflows

that are toward the end of their lifecycle. You can target

those workflows as well. The chances of error will be high

if the difference of source and target SAP version is high

and the source SAP version is very old. Normally, within

an SPS upgrade, you won’t find too many errors.

Identify the new workflow version in the standard

workflow.

Check for the workflow having new version in the

upgraded version of the workflow. Workflow runtime

instances are version dependent. Any in-progress

workflow will follow the execution path defined in the old

version. All new triggered workflows will follow the new

version of the workflow. So, users may report differences

in behavior of the same workflow. Identify the difference

between the workflow versions and document them as

part of user training. When you’re analyzing new version

of the workflow, you have to look for both technical

changes and end user impact changes. The end user

impact is used to feed into the training content. Technical

changes will help you understand if there will be any

impact on existing workflow processing.

Recognize the impact on the modified SAP standard

workflow templates.

It’s not recommended to directly modify standard SAP-

delivered workflow templates. But if you’ve done so,

those modified workflow templates will be overwritten

during the upgrade. SAP standard template modification

isn’t considered a repaired object. Therefore, if any

standard workflow template is modified, it won’t appear in

the Transaction SPAU list during the upgrade. Prepare the

list of such workflow objects. You have to revert back to

the version or redo the changes after the upgrade.

Copy workflow templates from the standard SAP

template.

You can check for the changes delivered in the standard

workflow templates. If new standard SAP version of the

workflow meets the business requirements, then you can

replace the custom workflow with the standard one. It’s

always recommended to use the standard workflow

templates.

Plan testing of the workflow.

It’s not possible to check all the impacts on the workflow

due to the upgrade, so test planning plays a bigger role in

upgrades. Keep every workflow in your test plan, and be

sure to keep both in-progress workflows and newly

triggered workflows part of your test plan. You have to

create some workflows before the upgrade happens and

keep different approval stage work items in the inbox.

This will help to test all the needed scenarios. Because

you won’t be able to generate a workflow with a pre-

upgrade version after the upgrade completes, you have to

create enough work items for testing before you start

your upgrade.

Perform a technical check in the upgraded

environment.

Check the following system configuration in the upgraded

environment. You should have a list of workflows used in

the system, so only check for those specific workflows:

Check for event-specific configurations, as listed in

Table 12.3.

Check syntax is free of errors for custom-developed

workflow: Open all the workflows in Workflow Builder,

and do a syntax check of the customer workflow. Check

for the container element binding syntax error.

Check automatic workflow customization (Transaction

SWU3). Refer to Chapter 8 for the node you should

check for completeness.

Synchronize the workflow buffer by running Transaction

SWU_OBUF after all changes/activations are done.

Transaction Code Transaction Description

Transaction SWE2 or

Transaction SWETYPV

Check for event linkage

activation for workflow

Transaction SWEC Check for event activation on

change document

Transaction Code Transaction Description

Transaction BSVW Check for workflow activation

in status management

Transaction SWB_COND Check start condition for

workflow

Table 12.3 List of Event-Specific Configuration Transactions That Should Be

Checked after Upgrade

Change in workflow container persistence data

The backend table to store persistence of the workflow

container is changed from SAP R/3 4.7 release onward.

Very few organizations are still in the previous release, so

you won’t find many instances of this change. Previously,

it was called the container structure persistence, which is

stored in table SWW_CONTOB and table SWW_CONT. Now it’s used

as XML persistence, which is stored in table SWWCNTP0. If

you find any workflows still using the old persistence,

switch to the new persistence for better performance.

There will be an impact on the custom table if any

customers are still using table SWW_CONTOB and table

SWW_CONT.

12.2.2 Migrating Your SAP ERP Workflows to

SAP S/4HANA

When you’re migrating to SAP S/4HANA, all the points

mentioned in Section 12.2.1 for system upgrades will be

applicable in this scenario as well. There are more changes

in the application layer and application tables in an SAP

S/4HANA migration. You need to assess the impact of the

application layer logic change and ABAP Data Dictionary

change impact, as follows:

Decide how many new features to bring into an SAP

S/4HANA brownfield conversion

There are significant changes in how the application is

used by end users and the technology used in SAP

S/4HANA. The old technology and UIs are still compatible

with SAP S/4HANA, so you have to decide along with the

project stakeholder how much redesign and change

should be brought in the workflow area in a brownfield

conversion. There are several customer adoption

scenarios we’ve seen in a brownfield SAP S/4HANA

conversion. Some customers don’t want to make any

significant change to end user usage when going for an

SAP S/4HANA conversion. They plan a subsequent project

after the SAP S/4HANA technical conversion for the

business transformation. Some customers bring the

transformation along with the SAP S/4HANA conversion. In

the workflow context, you have to check if the following

scenarios are applicable in your project:

Is there any change in the UI?

SAP Fiori is the recommended UI for SAP S/4HANA,

although you can still use SAP inbox. If the users were

using SAP GUI before the conversion and now SAP Fiori

or WebUI will be used, then all the workflow should be

tested in the new UI. With HTML for GUI, the classical

workflow screens will be available to the user. Because

it’s a new UI, you may find out some changes or issues

from an end user perspective. In addition, work with

your UX team to decide what will be used for the user

inbox: SAP inbox, Businesses Workplace, or a

combination of two.

Will any workflows be migrated to flexible

workflow?

SAP provides flexible workflow in SAP BTP along with

classical workflow. Depending on the project scope and

approach, you have to decide if any of the custom or

standard workflows can be migrated to flexible

workflow or on SAP BTP.

What will your design strategy be?

You have to come up with a design strategy on how new

workflows will be developed in SAP S/4HANA. There are

three options still available: classical workflow, flexible

workflow, and SAP Build Process Automation.

Custom code impact due to SAP S/4HANA

conversion

There are significant changes in the application layer

when you move from SAP ERP to SAP S/4HANA. The

function module and ABAP Data Dictionary objects are

changed. Some of these became obsolete or don’t exist in

the SAP S/4HANA system. Business object or workflow

class custom objects should be remediated to

accommodate this. As part of SAP S/4HANA custom code

remediation, you have to set up ABAP Test Cockpit with

the SAP S/4HANA remediation variant. Use the SAP

S/4HANA version variant that is relevant for your version.

The ABAP Test Cockpit will provide you the list of custom

code that needs to be remediated. It will also refer you to

the SAP Note number that will tell you about the change

that happened in SAP S/4HANA. This will help you

remediate your custom code.

Impact on container element

Because there are lots of simplifications in the ABAP Data

Dictionary area, you have to validate each container

element and binding. You can go to the Workflow Builder

and container binding screen to do a syntax check of the

workflow and take corrective action accordingly.

Impact of change in the transaction layout

The business application screens are changed a lot in SAP

S/4HANA from SAP ERP. You’ll find a totally new SAP Fiori–

based transaction available in SAP S/4HANA. For the same

transaction, your workflow may be using an old GUI-based

transaction. If the project decides to use the new SAP

Fiori-based apps, then it will be confusing for users to use

old GUI-based transaction for workflow and new SAP Fiori

apps for other purpose. you may have to rebuild the

entire workflow in Flexible workflow. Identify all your

existing workflows that call SAP ERP transactions or

screens. Evaluate those workflows regarding how they

should behave in SAP S/4HANA, and then remediate or

rebuild the workflow.

Impact due to obsolete transactions used in work

item processing

Some transactions are obsolete or don’t exist in SAP

S/4HANA, for example, Customer Master

Create/Change/Display (Transactions XD01/02/03/06,

Transactions FD01/02/03/06) or Vendor Master

Create/Change/Display(Transactions XK01/02/03/06/07).

Business partner is the new application object that should

be used to manage customers and vendors. If you have

any workflows based on these obsolete transaction codes,

then you have to redevelop your workflow in SAP

S/4HANA.

Change in workflow system user and workflow

system jobs

You’ll find that automatic workflow Customizing is no

longer green in the Maintain Runtime Environment

node after system conversion to SAP S/4HANA. This is a

change from SAP S/4HANA 1709 version onward. The SAP

workflow system user WF-BATCH is changed to SAP_WFRT, so

all the configuration where WF-BATCH was used needs to be

changed to the SAP_WFRT user. If you have any custom code

checking for the WF-BATCH user, those should be changed.

Ideally, any custom code should not have any logic based

on the user ID. You should validate the requirement and

implement the solution accordingly.

In SAP S/4HANA, the system makes sure user SAP_WFRT

exists and has role SAP_BC_BMT_WFM_SERV_USER_PLV01 assigned.

You’ll need to ensure this role is properly generated and

showing the green traffic light.

The job scheduling mechanism is also changed in SAP

S/4HANA. The jobs are managed by Transaction SJOBREPO

(Technical Job Repository). Workflow system jobs are

scheduled automatically, and the job name starts with

SAP_WORKFLOW. You have to deschedule all the old jobs in the

system in all clients. Jobs include SWWDHEX, SWWERRE, SWWCOND,

SWWWIM, SWEQSRV, and SWWCLEAR.

In the Technical Job Repository (Transaction SJOBREPO),

automatic scheduling of jobs must be switched on.

System job R_JR_BTCJOBS_GENERATOR runs every hour by

default. This job schedules all workflow jobs starting with

SAP_WORKFLOW. Refer to SAP Notes 2568271 and 2190119 for

more details.

Archive workflow objects to keep the system lean

Archiving is always recommended to keep the system

lean. Archive is more relevant for SAP S/4HANA

conversion because you’re moving to a platform. It’s a

good opportunity to do your housekeeping as well.

There are two ways to clean up old workflow information.

You can archive workflows using archive object WORKITEM. It

considers the dependencies of work items and archives a

complete logical set of workflow data. There is a standard

report RSWWWIDE to delete the workflow-related content

from tables. This doesn’t check the dependencies of the

work items, so you should be very careful when you’re

executing this report.

There are two kinds of workflows in the system: workflow

manages business transaction data that is auditable, and

technical workflow processes errors such as IDoc error

handling workflows. It’s recommended to use the

archiving process for auditable workflows. You can

consider deleting the technical workflows that aren’t

required in future. It should be discussed with the audit

team and project stakeholders before you finalize the

design.

Program RSWWWIDE doesn’t consider the dependencies,

so deleted work item–dependent data may stay in a few

other tables. You should execute the RSWWWIDE_DEP and

RSWW_REORG_SWWUSERWI programs to delete the

redundant entries from other tables. Refer to SAP Note

1427068 for further details.

12.3 New Implementation Projects

(Greenfield) and Selective Data

Transition

Now let’s move on the greenfield new implementations and

selective data transition. In a greenfield approach,

everything is built from new. Existing workflows should be

completed in the current SAP ERP system, and new

workflows should be started in the new SAP S/4HANA

system. You should use the appropriate workflow

development option as mentioned in Chapter 1, depending

on the business requirements and supported technologies.

Because there is no workflow migration requirement in a

greenfield implementation approach, we won’t discuss the

greenfield option in this chapter.

We’ll now discuss in detail what you should consider for

workflow migration when the customer has chosen the

selective data migration approach to move to SAP S/4HANA.

This wasn’t a very technical approach in the SAP ERP world

for a new SAP installation, but we’ve seen an increase in this

approach adaptation recently. We’ll start with an overview of

selective data transition. You need to understand the basic

technology behind this approach to help you anticipate

where challenges may appear and why. This will help you

make custom scenario-based decisions when needed. There

are two components of migrations you should always

consider: (1) developed workflow objects and

configurations, and (2) runtime data in the current system.

The migration strategy for developed workflow objects and

configuration should follow the approach mention in

Section 12.2. Handling workflow runtime data needs special

attention. We’ve discussed that in the subtopic in this

section. Finally, we’ll be talking about how to handle the

user master and SAP office settings.

12.3.1 Selective Data Transition Overview

Prior to SAP S/4HANA, selective data transition was used

mainly for system merges, acquisitions, divestitures, and

organizational change scenarios. However, it’s now

becoming very popular in SAP S/4HANA migration scenarios

also. SAP S/4HANA migration isn’t just a technical upgrade

project; it provides an opportunity to reengineer your

process, cleanse and transform data, harmonize and

optimize the system landscape, and merge systems to

consolidate the systems. The selective data migration

approach supports all these scenarios where you can keep

the organization-specific past investment with the new

transformation and functionalities of SAP S/4HANA and can

implement it more quickly.

Let’s now briefly walk through how selective data migration

works, as follows:

1. Create an empty shell of the SAP ERP system. This

empty shell contains only configuration and custom

code from the source SAP ERP system. There are two

approaches to create this empty shell: (1) You can

create the empty shell from an existing SAP ERP system,

which will bring the code and configuration

automatically; or (2) you can do a fresh installation of an

SAP S/4HANA instance in which you have to bring the

selective configuration and code using some tool or do it

manually. This is known as the mix-and-match approach.

2. If the empty shell is created from the current SAP ERP

system, then you do a conversion of this system to SAP

S/4HANA. This will be simpler and faster because this

system doesn’t contain any data.

3. You do SAP S/4HANA-specific configuration and custom

code remediation in the converted SAP S/4HANA box. If

it’s a fresh installation of SAP S/4HANA, you also do the

new configuration and system setup here.

4. You migrate the data from the source SAP ERP system to

the target SAP S/4HANA system. This data migration

happens as a table-to-table migration, so you can bring

historical data as well, which isn’t possible in a typical

greenfield implementation where you use application

programming interfaces (APIs) to move data. During this

data migration, all kinds of additional data selection and

transformation rules can be applied. Following are some

examples of the scenarios for selective migration to SAP

S/4HANA:

Move X years of data to the target SAP S/4HANA

system.

Harmonize and reduce the number of charts of

accounts during data migration.

Don’t move data related to sold companies.

Don’t move master data flagged for deletion and their

corresponding transactional data.

Transform the data alignment with the new

organization structure, configuration, or master data.

Merge two SAP ERP systems into one SAP S/4HANA

system (system consolidation scenario).

Carve out only specific organizational unit–related

data to SAP S/4HANA (divestiture scenario).

Use the near zero downtime approach to reduce the

overall business downtime during go live.

Selective data migration to SAP S/4HANA can only be

performed by some selective specialized company with their

toolset. SAP established an expert group of partners in 2018

called the SAP S/4HANA Selective Data Transition

Engagement. These five partners are SNP, SAP, CBS,

Datavard (now part of SNP), and Natuvion. If you’re

considering the selective migration approach for SAP

S/4HANA migration, then you have to work with one of these

partners. You can’t build your own tool for selective data

migration.

12.3.2 Managing the Technical Migration of

In-Process Workflows

Now we’ll discuss what should be considered when we’re

thinking of data migration of workflows and selective data

migration. This is one of the items that comes up in all

project discussions: whether workflow-related data can be

migrated to SAP S/4HANA and what are the limitations. As a

workflow expert, you’ll be involved in those discussions.

Before you decide if the workflow data should be migrated

to SAP S/4HANA systems, you need to know when it can or

can’t be migrated to SAP S/4HANA. You’ll see three

scenarios of selective data migration:

Full data migration to SAP S/4HANA system without

any change or data filter

You can consider moving the workflow-related data into

your SAP S/4HANA system. The data will be migrated as is

from SAP ERP to SAP S/4HANA. Follow the

recommendation provided for the brownfield conversion

in this case as well. Though it’s possible to move all

workflow data as is, it’s recommended to complete

workflows in the source system as much as possible.

Selective data migration where selection is based

on number of years/date and time

This selection rule is normally applicable for business

application objects. How this selection logic will be

applicable for workflow objects should be verified. If the

work item creation date is with the date selection, that is

still doable. But it can create problems with dependencies.

For example, per the project requirement, you have to

move the data created/changed in the past three years. A

sales order approval was started a little bit earlier than

three years, but after the approval, the sales order is

eventually created within the “past three years” window.

If you now go by the selection rule, that is, data created

within the past three years, you’ll move the sales order,

but you won’t move the workflow because it was started

earlier than three years. So, you’ll have a sales order in

the system, but you won’t find the approval history of that

sales order. You should consider all these kinds of

dependencies and set up business expectations

accordingly. Some of the dependencies can be handled

technically. But it will be too complex and may not be

worth it to build such complex logic during data migration.

You have to balance between what is technically possible

and what is realistic in the context of the project.

You should also consider the workflow-dependent

technical data. For example, if a work item meets the

selection rule, then you have to bring the entire workflow

and all other work item and log information of that

particular workflow. You should consider these exceptions

and business user impact if you still want to bring

workflow data. These kinds of dependencies make the

extraction rule complex and performance intensive,

increasing downtime. It’s technically possible to bring this

workflow data, but it will have other impacts and

complexities. You have to consider this and define your

data selection approach accordingly.

Selective data migration in which selection is based

on an organizational unit (e.g., company code)

In this scenario, you want to bring only certain

organizational unit– or master data–specific workflows.

The workflow container contains the business data in an

XML persistence layer. You have to read individual

business object instance or workflow container instance

data, extract that information, and then decide if this

specific workflow should be migrated or not. Though it

sounds technically possible, it has a huge performance

impact during selection, so it’s recommended not to bring

this kind of workflow, if possible. It’s better to complete

the workflow in the source system and retrigger it again in

the target SAP S/4HANA system.

Other selective data migration where data is

transformed during migration

If the data is transformed during the import part of the

data migration, it’s not possible to move workflow data

into the target system. Normally, the transformation rule

is applied at the domain level. It’s not possible to apply

the same rule for the workflow, so workflow data usually

isn’t moved to the SAP S/4HANA system if data is

transformed during migration.

You should think of how to close the existing workflow and

how to restart partially completed workflows in the new

systems if workflows aren’t migrated to a new system.

Change management activity will occur, which should be

planned early.

You also need to think of attached documents for workflow

migration. The documents attached in a workflow are

usually stored in a content management repository system.

SAP tables only contain the link to the documents in the

content repository. There won’t be any impact if there is no

change in the content management repository system. But

SAP S/4HANA projects may also involve infrastructure

migration. If your content repository is also migrating, check

that there is no change in the object link.

12.3.3 Migrating User Data and SAP Office

Settings from SAP ERP to SAP S/4HANA

Usually, user master data isn’t migrated directly from the

SAP ERP production system to the SAP S/4HANA production

system in a selective migration scenario. There are other

standard options to migrate user master data from existing

SAP ERP systems to SAP S/4HANA systems. Therefore, the

base principle of table-to-table migration for selective

migration isn’t generally used here. Keep in mind that SAP

ERP security roles will go with significant remediation and

change when you’re migrating from SAP ERP to SAP

S/4HANA. There will be new roles introduced for SAP Fiori

apps and any new business process if you’re activating.

There will be adjustments to existing roles to make them

compatible with new roles and replaced transactions in SAP

S/4HANA. These role changes will move in a transport, so

you have to keep in mind the sequence of role change

transport and user master migration. Role change transport

should be moved after the user master migration. Transport

movement happens during uptime as part of the system

build. This activity is completed a couple of weeks before

the downtime. That means you have to move the user

master data a couple of weeks before, so there will always

be a mismatch of delta that is updated during these days.

It’s advisable to have a change freeze during this time. Here

are some of the common approaches normally taken to

move user master data:

User master provisioning tool

Lots of organizations use a user master provisioning tool

to create and update user master records, such as SAP

Identity Management. Those applications have the

capability to re-push the current user master records. You

can consider these tools to recreate the user master in

the productive system. You have to check if there is any

exception such as system users that aren’t managed

using the user provisioning tool. Those need to be

handled manually.

User master export/import

You can export the user master from SAP ERP and import

it into the SAP S/4HANA system. If the name of the roles

aren’t changed in the target SAP S/4HANA system, then it

should get imported without an error. There are some

concerns that come up because you’re importing user

master in a different version of the product, so it’s not a

preferred option in some projects. However, we’ve seen it

work. It should be tested in a nonproductive environment

first before doing it in production.

Custom program

You can write a custom program to read the user master

data and create it using a business application

programming interface (BAPI). It works mostly, but you

won’t be able to bring the new password.

Manual creation

If the number of users is too low, you may think of

recreating it manually, but this isn’t a preferred option.

There can be manual input errors during creation.

SAP office settings represent another area where you have

to clearly discuss with your Selective Data Migration partner

regarding the strategy of migration. In general, if the

workflow is moved from the source SAP ERP system to the

target SAP S/4HANA system, then the office settings also

get migrated along with the same data objects. All objects

related to office settings, for example, workflows, SAP office

folder, distribution lists, and so on, are interdependent. It’s

recommended to move everything in office rather than have

further selection for tables. That will reduce the data

migration complexity and create a better UX after the SAP

S/4HANA migration.

12.4 Summary

We’ve discussed three implementation approaches for SAP

S/4HANA: brownfield conversion, greenfield implementation,

and selective data migration. We’ve talked about different

scenarios and market trends of implementation scenarios

for each implementation approach. We’ve discussed in

detail what should be considered and validated in a system

upgrade and an SAP S/4HANA conversion project. Then, we

explained the different workflow build approaches available

in SAP S/4HANA and when to adopt these. We’ve discussed

the selective migration approach with different use cases

and explained the additional complexities the selective

migration approach brings in the context of workflow

migration.

13 Workflow in SAP Master

Data Governance

SAP Master Data Governance (SAP MDG) uses SAP

Business Workflow to define and execute validation

and approval workflows for master data change

requests. These workflows route change requests

created by requestors to data stewards and other

stakeholders, allowing them an opportunity to review

and approve any changes before these changes

become effective.

Master data records such as customers, suppliers, materials,

and general ledger accounts are used in many purchasing,

sales, and accounting business processes. Having accurate

master data records is a critical requirement for running

these business processes efficiently. For example, having an

accurate delivery address for customers ensures that

deliveries are made on time, and better material master

data improves inventory management and ordering

processes. Many organizations have legal and regulatory

requirements for data privacy, retention, and destruction of

sensitive data, as well as to maintain the audit trail of

changes to critical data records. Master data records are

also used in reporting, and analytics and having accurate

master data records is a prerequisite for achieving timely

and accurate reports that are essential for effective

decision-making.

Organizations implement SAP Master Data Governance (SAP

MDG) to improve quality and trust in their master data by

having a centrally governed single source of truth for

master data records. When various business units of an

organization share master data, each master data record

has multiple stakeholders from one or more business units.

Any changes to a shared master data record can impact

business processes in multiple business units. Organizations

need to ensure that changes to master data records are

reviewed and approved by all stakeholders before these

changes become effective. Approval processes depend on

the type of master data that is being changed and the type

of changes that are being requested. SAP MDG provides

preconfigured workflow templates that implement

commonly used approval processes for customer, supplier,

material, and financial master data across various

industries.

In this chapter, you’ll learn about various workflow

templates available in SAP MDG and how these templates

can be used, customized, and enhanced to meet specific

requirements. We’ll explore workflow templates used in

validation and approval of business partner, supplier,

customer, material, and financial master data. We’ll also

cover a rule-based workflow template that can be

configured to model simple as well highly complex approval

workflows.

13.1 Introduction to SAP Master

Data Governance

SAP MDG is a master data management solution providing

preconfigured data models, workflow templates, and user

interface (UI) application to centrally create, change, and

distribute master data records to SAP and non-SAP systems

across the entire system landscape.

A typical process in SAP MDG starts when a user creates a

change request using a UI application. Change requests can

also be created using a system interface when changes are

initiated by another system and sent to an SAP MDG system

using a system-to-system interface. Either way, a change

request is created, and a workflow process is initiated. A

data specialist reviews the changes requested and ensures

that all required fields are populated and that the requested

changes meet the data validation rules defined for the type

of master data record that is begin changed. Many of these

validation rules are executed by the system in the

background, and the results of the validation are available

to the data specialist.

If changes are incorrect, the data specialist can reject the

change request and send it back to the requestor with a

note explaining why the change request is being rejected.

The requestor can make additional changes and resubmit

the request or withdraw it. Once the data specialist

approves the request, the request is typically forwarded to

the data steward for final approval. At this step, the final

approver can approve or reject the request. When the

request is finally approved, changes are activated and are

visible using the standard data maintenance applications

and transactions. Changes are also often distributed to one

or more systems so that all these systems receive the

updated and approved master data records. Figure 13.1

shows typical steps in a change request process approval

workflow.

At any point in time, all stakeholders, including requestors,

data specialists, and data stewards, can view the status of

the change request, a list of actions taken so far, and the

next steps in the workflow. This audit trail is available even

when a change request is finally approved or rejected and is

used to analyze the change request process and prepare

reports on master data changes.

Master data undergoing changes is copied to a staging area,

where changes are made to the data and validations are

executed. This ensures that changes being requested and

reviewed aren’t active and don’t affect ongoing business

processes. Only after changes are approved are they

activated and copied from the staging area to the active

area. Only the activated changes are then distributed to

other systems in the landscape. While a master data record

is undergoing changes, it’s typically locked for further

editing to ensure that multiple changes don’t overlap.

However, parallel change requests are also possible, which

allows multiple changes to be executed.

Figure 13.1 Typical Steps in a Change Request Approval Workflow Process in

SAP MDG

13.1.1 Data Models in Central Governance

A data model in SAP MDG defines the structure of the data

that is being governed. A data model consists of entities,

attributes, and relationships. SAP delivers data models for

business partner, material, and financial master data

records. An entity in a data model is a set of attributes used

to store different types of data in the data model. An entity

in SAP MDG is like a table in SAP Data Dictionary; in fact, a

table is generated for each entity in the data model. An

entity contains several attributes, and each attribute defines

one field of a master data record. Entities are linked with

each other using relationships. The relationship type

determines whether one entity type is at a higher level than

another entity type or whether it’s to be copied as an

attribute of the other entity type. Figure 13.2 shows

standard data models delivered by SAP. Data models can be

displayed using Transaction MDGIMG via menu path Master

Data Governance, Central Governance • General

Settings • Data Modeling • Edit Data Model.

Figure 13.2 Standard Data Models Delivered by SAP

A key concept in an SAP MDG data model is storage area.

There are two storage areas in SAP MDG, as follows:

Staging area

The staging area contains data that is currently being

changed though a change request. The system uses the

data model to generate tables for storing the data that is

undergoing change. When a change request is created,

data is copied from the active area into the staging area,

and all changes are applied to the records in the staging

area tables. Validations and derivations are executed on

the data held in the staging area. If a change request is

activated, data is copied from the staging area back to

the active area and removed from the staging area. If a

change request is rejected or withdrawn, data in the

active area remains unchanged and is removed from the

staging area.

Active area

The active area contains data that is ready to be

distributed to other systems or ready to be used by other

applications and systems. Data can be loaded in the

active area using standard data migration tools. Data in

the active area can be used to create a change request.

When a change request is created, data is copied from the

active area into the staging area. The system copies data

from the staging area into the active area once a change

request is activated.

13.1.2 Change Request in Central Governance

A change request in SAP MDG is a container that holds

changes to the master data that is being changed. A change

request is created for create, read, update, and delete

(CRUD) operations and is configured to support the end-to-

end process of requesting master data changes, deriving

attributes, validating changes, approving or rejecting the

changes, and finally activating or withdrawing changes. In

the following, we’ll discuss some of the important properties

of change requests that are relevant to workflows:

Change request type

A change request is always associated with a change

request type. A change request type determines the type

of data that can be changed and type of change. The

standard system provides several preconfigured change

request types, for example, change request type SUPPL1P1

is used to create a supplier, and change request type

MAT02 is used to change material master data. Figure 13.3

shows some of the standard change request types

delivered by SAP. Change requests can be edited with

Transaction MDGIMG using menu path Master Data

Governance, Central Governance • Process

Modeling • Change Requests • Create Change

Request Type.

Change request step

Every change request type has one or more change

request steps associated with it. Examples of change

request steps are submission, validation, approval,

revision, activation, and so on. A change request can go

through one or more of these steps depending on the

type of data that is undergoing change, type of changes

that are being made, and the decisions made by user

agents during the processing of the change request.

Depending on the type of workflow template used for the

change request, change request steps are defined

differently. For rule-based workflow, change request steps

are defined using Transaction MDG following menu path

Master Data Governance, Central Governance •

General Settings • Process Modeling • Workflow •

Rule-Based Workflow • Define Change Request

Steps for Rule-Based Workflow. You’ll learn about rule-

based workflow in Section 13.1.10. Figure 13.4 shows

change request steps defined for change request types

that use rule-based workflow.

Figure 13.3 Standard Change Request Types Delivered by SAP

Figure 13.4 Change Request Steps for Change Request Types That Use

Rule-Based Workflows

For change request types that use preconfigured workflow

templates, change request steps can be defined using

Transaction MDGIMG and following menu path Master

Data Governance, Central Governance • General

Settings • Process Modeling • Workflow • Other

MDG Workflow • Define Change Request Step

Numbers. Figure 13.5 shows change request steps

defined for preconfigured workflow templates.

Figure 13.5 Change Request Steps Defined for Preconfigured Workflow

Templates

Change request actions

A user that is processing a change request can perform

one or more actions that correspond to the buttons on the

UI application. If a change request task is a background

task, the system executes the task, and the result of the

execution is determined as one of the possible actions for

the step. Figure 13.6 shows some of the standard change

request actions delivered in the standard system.

Figure 13.6 Examples of Change Request Actions Delivered with the

Standard System

Change request step type

A change request step is associated with a step type. A

step type determines what actions are available for a

change request step. Figure 13.7 and Figure 13.8 show an

example of change request step types and available

actions for a change request step type, respectively.

Figure 13.7 Change Request Step Types

Figure 13.8 Actions Assigned to Change Request Step Type Approve

Change Request

Workflow template

An important property of a change request type is the

workflow template that is used to control the change

request process. A workflow template determines the

steps that are executed, the order in which these steps

are executed, the agents assigned to execute these steps,

and the status of the change request after each step.

Several preconfigured workflow templates are delivered

by SAP. We’ll discuss these workflow templates in detail in

Section 13.2. Additionally, a rule-based workflow template

is also delivered in the standard system. This workflow

template is configured using a set of decision tables that

are then used by the template to control the workflow.

We’ll discuss rule-based workflow in Section 13.1.10.

13.1.3 Business Object BUS2250

Every change request in SAP MDG uses a workflow

definition. Object type BUS2250 (SAP MDG change request) is

delivered in the standard system for workflows associated

with SAP MDG change requests. Figure 13.9 shows events

associated with object BUS2250.

Event type linkage for event CREATED of object BUS2250 must

be activated to enable triggering a workflow when a change

request is created. The workflow system will use SAP MDG

Customizing to determine which workflow must be

triggered. Event linkage can be activated using Transaction

MDGIMG by following menu path Master Data

Governance, Central Governance • General Settings •

Process Modeling • Workflow • Activate Event Type

Linkage. Figure 13.11 shows all the event linkages for

object BUS2250.

Figure 13.9 Business Object BUS2250 (SAP MDG Change Request)

Figure 13.10 Event Type Linkages for Object BUS2250 (SAP MDG Change

Request) Part 1

Figure 13.11 Event Type Linkages for Object BUS2250 (SAP MDG Change

Request) Part 2

Note

In event type linkage Customizing, don’t assign a receiver

type. Receiver type is determined based on the change

request type used to create the change request. If a

receiver type is specified, the system will always use this

workflow template for every change request type.

Similarly, don’t activate event linkage in the header of the

workflow template. If a workflow template is started in

response to the CREATED event of the BUS2250 object, the

system will always start this workflow template for all

change request types.

The CREATED event has the following parameters:

CR_CREATOR

User ID of the requestor who submitted the change

request.

CR_CREATOR_NAME

Name of the requestor who submitted the change

request.

CR_WORKFLOW

Workflow template associated with the change request

type.

CR_TYPE

Change request type used to create the change request.

CR_EDITION

Edition used to create the change request.

CR_CONTEXT_PARAMETER

A list of context parameters that are available throughout

the process.

These parameters are used in the workflow templates for

deciding the flow and agents for certain work items, sending

notifications of work item creation, and determining work

item texts.

13.1.4 Standard Dialog Tasks Used in

Workflow Templates

Once a change request is created using a UI application or

using an application programming interface (API) call, the

system will trigger the workflow associated with the change

request type that was used to create the change request.

One or more work items will be created when the workflow

starts. If the work item created is a dialog work item, it must

be assigned to dialog users so that the users will be able to

execute the work item. To enable the assignment of users as

agents to work items, a dialog task needs to be categorized

as a general task. If the task isn’t categorized as a general

task, and if a processor is assigned to the change request

step that isn’t assigned as a possible agent for the workflow

task, no user will be able to execute the task, and the

workflow will end in error. To categorize the workflow tasks

as general tasks, call Transaction MDGIMG and follow menu

path Master Data Governance, Central Governance •

General Settings • Process Modeling • Workflow •

Configure Workflow Tasks. The application component for

the SAP MDG application framework is CA-MDG-AF. Click on

the Assign Agent link, and classify any task that isn’t a

background task as a General Task, as shown in

Figure 13.12.

Figure 13.12 Categorizing Workflow Tasks as General Tasks

In addition to categorizing tasks as general tasks in the

application framework component (CA-MDG-AF) you must

categorize the tasks in the SAP MDG application

components for the master data domains that you’ll be

using. Table 13.1 shows application components for each of

the standard data models provided by SAP.

Application

Component

Application Component

Description

CA-MDG-APP-CA SAP MDG for Contract Accounting

CA-MDG-APP-FIN SAP MDG for Financials

CA-MDG-APP-CUS SAP MDG Customer Central Parts

CA-MDG-APP-MM SAP MDG Material

CA-MDG-APP-SUP SAP MDG Supplier (Central Parts)

Application

Component

Application Component

Description

CA-MDG-APP-BP SAP MDG Business Partner (Central

Parts)

Table 13.1 Application Components Used by SAP MDG

13.1.5 Standard Dialog Tasks

Preconfigured workflow templates delivered by SAP use

many dialog tasks for work items that must be executed by

users. Examples of such work items are necessary actions

on change requests such as enriching change request data

provided by the requestor, evaluating changes, reviewing

validation errors and warnings, and activating change

requests. Dialog tasks are used to launch the change

request UI application associated with the change request

type and change request step. The system will evaluate the

SAP MDG Customizing to determine the Web Dynpro

application and application configuration and then launch

the application. This will allow the user to process the

change request. The following dialog tasks are delivered as

standard:

Evaluate change request (TS75707979)

This task is used when the change request is created with

only basic attributes such as description and notes, and

data specialists haven’t yet added any master data

records to the request.

Process change request (TS75707943)

This task is used to process the change request after the

requestor or data specialist has added details of the

changes.

Approve change request (TS75707980)

This task is used to approve (or reject) the change request

after changes are evaluated and all validation errors are

resolved by data specialists.

Revise change request (TS75707981)

This task is used by the requestor to revise the change

request after it has been rejected by an approver.

All these standard dialog tasks call method PROCESS of

business object BUS2250. All task containers share the

following import parameters:

Workflow step number (APPSTEP)

This parameter holds the value of the change request

step (and not the workflow step, as the name would

indicate). The system determines several Customizing

attributes defined at the change request step level,

including UI application and configuration, validations to

executed, enrichment spots to be processed, and so on

using this parameter.

Workflow step type (STEP_TYPE)

This parameter is used to distinguish between different

dialog tasks and is used to determine the work item

description.

SAP MDG change request (_Wi_Object_ID)

This parameter holds the value of the change request

number and is populated in the task container from the

value provided by the CREATED event of business object

BUS2250. This parameter indicates which change request

should be processed by the task.

13.1.6 Standard Background Tasks

In a typical workflow template for SAP MDG, dialog tasks are

used for taking input from users while background tasks are

used to process the input received from the user.

Background tasks are used to set the status of the change

request, perform validation of the changes, update the

validation log, activate the change request, write the

activation log, run derivation rules and call third-party

services to enrich change request data, send custom

notifications, determine agents for the next step of the

change request, evaluate results of the parallel step, and so

on. These background tasks use the parameters received

from the workflow container to perform the task and then

update the workflow container with the results. The specific

import and export parameters used vary depending on the

task. Following are some of the most used background tasks

in different workflow templates:

Set status of change request (TS75707951)

This task sets the status of the change request to reflect

the result of the previous task. The workflow template will

use the change request status to determine the next step

and agents for the next step, configure UI properties, and

so on.

Check change request (TS75707952)

This task calls the VALIDATE method of the BUS2250 (SAP

MDG change request) business object to run validation

rules designed for the change request type. Results of the

validation process are written in the validation log and

can be accessed using Transaction SLG1. UI applications

used in SAP MDG also allow users to display validation

logs. Change request steps can be configured to convert

validation errors into warnings to allow users to submit

change requests with partial or incorrect data, which can

then be enriched by experts. Similarly, change request

steps can be configured to ensure that all validation errors

are resolved before further processing of the change

request is allowed.

Path and process finder (TS60807945)

This task is used by the rule-based workflow template to

find the next step in the workflow process and number of

parallel paths for the next step. Rule-based workflow

template uses a set of decision tables, and this task

determines the next steps by reading the decision table

records. Section 13.1.10 provides an overview of the rule-

based workflow template.

Activate change request (TS60808005, TS60808002)

Once a change request is successfully validated and

approved, it’s activated. During activation of the change

request, master data records in the change request are

copied from the staging area to the active area and

distributed. At the time of creating the change request,

the system copies the records from the active area and

staging area, and changes are applied to this copy. Task

TS60808005 is designed to perform this activity. At the time

of activation of the records, the system compares the

snapshot of the record that was copied to the staging area

with the current snapshot and, if there is a difference,

raises an error. This will avoid overwriting any changes to

the active area records that may have happened outside

of the governance process. If changes should be

overwritten, task TS60808002 can be called by the workflow,

which will bypass the snapshot and activate the change

request.

Discard change request (TS75707936)

Standard workflow templates allow requestors to

withdraw the request if the changes aren’t necessary or

can’t be approved. When the requestor decides to

withdraw the change request, task TS75707936 is called to

roll back the change request by removing the records in

the change process from the staging area without copying

them back to the active area. This action also unlocks the

records so that these records can be included in the

change requests in the future.

13.1.7 Agent Determination

Agent determination or assignment of agents to tasks is an

important task in workflows used in SAP MDG. Organizations

that implement SAP MDG often have elaborate agent

determination rules to ensure that all the required

stakeholders are involved in the approval process without

slowing down the approval process. Often, these are

conflicting objectives because involving more stakeholders

will increase the number of approval steps, which will slow

down the process. Having an optimum agent determination

strategy will ensure that all stakeholders that must be

involved in the approval process are part of the process

without causing a significant delay in how long the approval

process runs.

Agents are often determined based on the type of data that

is undergoing change and the type of change that is being

carried out. For example, the approval process for creating

new spare parts is often different from the approval process

for creating new hazardous chemical materials. Similarly,

changing the bank data of a supplier involves more steps

than updating the address of a customer. Organizations

have data experts that specialize in specific types of

business processes and master data used in those

processes. Data experts who can provide and validate

financial data of customers and suppliers are often different

from those who can provide and validate sales data for

customers, and yet another set of specialists exists who can

provide purchasing data for suppliers. For material master

data, different data experts are involved in the approval

process depending on the material type or material group.

Approvers for finished goods are often different from

approvers for service materials. For financial data, there can

be different stakeholders for financial accounting data such

as general ledger accounts and financial reporting

structures that are different from stakeholders for

management accounting data such as profit centers and

cost centers. In some organizations, a committee often

exists that creates and validates changes to all types of

financial master data at the group level to ensure uniform

financial master data across the organization.

Agent determination rule AC75700139 (workflow processor of

change request) is used to determine the agents. This rule

uses parameter AGENT_FILTER to select a business add-in

(BAdI) implementation for the agent determination. The

workflow templates provide the value of the agent filter

attribute. Several standard BAdI implementations are

delivered by SAP for different filter values. Filter value

STANDARD is used to select agents by reading the SAP MDG

Customizing tables. Filter values ERP_MDGS and ERP_MDGC are

used to select BAdI implementations that use a Business

Rules Framework plus (BRFplus) application to determine

the agent. The following sections describe the agent

determination used by standard and rule-based workflow

templates.

Agent Determination for Standard Workflow

Templates

SAP has delivered several workflow templates for different

change request types used in SAP MDG. Section 13.2,

Section 13.3, and Section 13.4 provide a detailed

description of these workflow templates. These workflow

templates use a set of rules that determine agents for

various work items that are created during the execution of

the workflow instance. SAP MDG uses the HR organization

structure to determine agents for various work items.

Objects in the HR organization structure such as

organizational unit, job, or position are used to determine

the agents. Users are assigned directly or indirectly to these

objects using Transaction PPOCW (Organization and Staffing

[Workflow] Create) or Transaction PPOME (Organization and

Staffing Change). Staffing assignments for these objects are

then used to determine the users that will receive a work

item. There are two ways to configure agents for standard

workflow templates:

Agent determination using SAP MDG Customizing

tables

SAP MDG provides an easy way to assign agents to

workflow steps using Customizing tables that can be

accessed via Transaction MDGIMG and menu path Master

Data Governance, Central Governance • General

Setting • Process Modeling • Workflow • Other MDG

Workflows • Assign Processor to Change Request

Step Numbers (Simple Workflow). Figure 13.20 later

in the chapter shows an example of agent assignment

using SAP MGD Customizing tables.

Agent determination using the BRFplus application

For implementing advanced agent determination rules,

BRFplus applications are used. Agent determination for

workflow templates used for governance of customers

and suppliers use BRFplus applications. SAP has delivered

BRFplus application MDG_BS_ECC_SUPPLIER_WORKFLOW for

supplier master data and MDG_BS_ECC_CUSTOMER_WORKFLOW for

customer master data. Both these BRFplus applications

have a function named AGENT_DETEMINATION, which is called

by the agent determination task of the workflow template.

This function uses decision table GET_AGENT in the

application to determine the agents. A decision table

allows multiple columns as search columns and two

columns as output columns (for object type and object

ID). The search columns are used to search for a record

that closely matches the parameters from the workflow

instance, and the output columns provide the objects

(from the organization structure) that are then used to

resolve the valid agents for the work item. Because

decision tables provide pattern matching and other

features, a complex agent determination strategy can be

built using these applications. Refer to Section 13.2.3 for

an example of how the BRFplus application is used to

assign agents to a workflow template.

Agent Determination for Rule-Based Workflow

Templates

In addition to standard workflow templates, SAP has also

delivered a rule-based workflow template (WS60800086).

Section 13.1.10 provides a detailed description of the rule-

based workflow template. This workflow template uses a set

of decision tables that determine the number of steps and

agents that are assigned to the work items created for these

workflow steps. Agents can be assigned to the workflow

step using the HR organization structure objects such as

organizational unit, job, or position. Additionally, security

roles can be used to determine agents for specific work

items. Users that are assigned to these organizational

objects or security roles are then determined as agents. A

special type is also supported by the rule-based workflow

template, which allows either the workflow initiator or agent

that executed the previous step to be determined as an

agent for the current step. This is often helpful when a

change request workflow must be routed back to the

previous user or all the way back to the requestor due to

rejections.

13.1.8 Workflow Container Used by Workflow

Templates

All the workflow templates in SAP MDG use a set of

attributes as part of the workflow container. These

attributes are initially populated by the CREATED event of the

BUS2250 object when the workflow is triggered and later by

the execution of the workflow tasks. These attributes allow

the correct routing of various steps based on the result of

the previous step, determine the agents for various steps,

and set correct descriptions of various work items.

Figure 13.13 shows typical attributes of a workflow

container used by SAP MDG workflow templates.

The following are some of the important attributes of the

workflow container.

CHANGE_REQUEST

This is the BUS2250 object that triggered the workflow. This

object stores all the information related to the change

request such as change request type, ID and name of the

creator, change request number, and any context

parameters.

BRANCHES

This multiline attribute holds all the individual BUS2250

objects created for each branch of a parallel workflow.

PROCESSOR

This is the current processor of the work item.

ACTION_RESULT

This is the result of the previous step. Workflow templates

often use the results of the previous step to determine the

next step as well as the agents for the next step.

AGENT_FILTER

This filter value is used by the agent determination rule

AC75700139.

ACTIVATION_ERROR

This flag indicates if an error occurred during the change

request action.

Figure 13.13 Typical Workflow Container Used by Standard Workflow

Templates in SAP MDG

13.1.9 Workflow Log for Change Requests

During the execution of the change request workflow,

several dialog and background tasks are executed. For

dialog tasks, a user must take an action for the workflow

process to continue to the next step. Many organizations

require that an audit trail or log of these actions must be

maintained so that it can be reviewed later to determine the

users who are involved in the change request process, the

actions they took, and the date and time the action was

taken. For certain industries, there are legal and regulatory

requirements that such an audit trial be maintained for

critical master data change requests. In addition to legal or

regulatory requirements, many organizations also have

certain service-level agreements for some type of master

data management tasks, and they need to review the

workflow log to ensure that change requests and steps

within the change request process are executed within the

given time frame. For workflows that aren’t yet complete,

administrators need to know the status of the workflow and

who are the next people that need to act for the process to

move forward. The workflow system can also send

automatic reminders when certain work items aren’t

executed within a given time frame.

Figure 13.14 shows the workflow log for a change request in

SAP MDG. The workflow log contains the work item ID, work

item description, processor who processed the work item

(for completed work items) or list of processors (who are

assigned as the agent) for work items that are ready to be

processed, work item status, date and time the work item

was created and processed, and action taken for completed

work items. Background tasks are also included in the work

item log.

Figure 13.14 Workflow Log for an SAP MDG Change Request

13.1.10 Rule-Based Workflow Template

SAP delivers several workflow templates (discussed in detail

in Section 13.2, Section 13.3, and Section 13.4) for the

most-used governance process patterns in different

industries for different types of master data objects. If an

organization’s requirement for the governance process is

only marginally different from the process pattern in the

workflow templates delivered by SAP, it’s often easier to

make a copy of the standard template and adjust. However,

if the process requirements differ by a large degree, it may

not be possible to adjust the standard templates. For such

cases, SAP has delivered a rule-based workflow template

(WS60800086) that uses a set of decision tables to decide the

number of steps, agents for these steps, and control of the

flow. By configuring these decision tables, it’s possible to

model everything from a simple two-step sequential

approval process to a multistep process with parallel steps,

exceptional approvals, and dynamic branches. The flexibility

offered by the rule-based workflow template makes it

suitable in cases where requirements are often simple

initially but evolve into more complex requirements over

time. Figure 13.15 shows examples of process patterns that

can be built using the rule-based workflow.

For each change request type that uses the rule-based

workflow, the system generates a BRFplus application with

an application that contains the change request type. The

generated application contains all the required functions,

rulesets, data elements, and structures required for the

application. Workflow template WS60800086 isn’t designed

specifically for a data model or a change request. It contains

generic tasks that read the information stored in the

generated application to decide the steps, agents, and

control of the process flow. The system-generated BRFplus

application can be accessed by calling Transaction MDGIMG

and menu path Master Data Governance, Central

Governance • General Settings • Process Modelling •

Workflow • Configure Rule Based Workflow. BRFplus

applications can also be accessed using Transaction

USMD_SSW_RULE.

Figure 13.15 Examples of Process Patterns Built Using the Rule-Based

Workflow Template

Workflow Template WS60800086

Workflow template WS60800086 contains tasks that use the

system-generated BRFplus application and the decision

tables configured in the application to determine the next

step and agents for the next step primarily using the

previous step, result of the previous step, and other

parameters. The workflow template isn’t designed for any

specific data model, but the data model–specific data is

read from the generated BRFplus application. Figure 13.16

shows the process diagram for the rule-based workflow

template.

Figure 13.16 Process Diagram for Rule-Based Workflow Template

WS60800086

The workflow is started when a change request is created.

The workflow template doesn’t have any event linkage, but

the workflow is started when event CREATED of business

object BUS225 is triggered. The system reads the change

request type and related attributes from the event object

and SAP MDG Customizing tables and then transfers the

data to the workflow container. The system evaluates the

single-value decision table based on the previous step and

previous action along with other parameters to determine

the condition alias for the next step. The user agent and

nonuser agent tables are then searched for the condition

alias to determine if the next step is a dialog step or a

background step. The system also evaluates if parallel

processing is enabled for the next step.

Parallel processing for a step can be enabled by configuring

multiple agent groups for the condition alias for the step. In

this case, one subworkflow is created for each group. Each

of these subworkflows is an instance of the rule-based

workflow template using the same generic template, that is,

the same set of decision tables, and other data is used for

the subworkflows and the parent workflow. Once all

subworkflows are completed, the system calls BAdI

USMD_SSW_PARA_RESULT_HANDLER to merge the results of the

individual results into a single result, which will then be

evaluated to decide the next step.

If parallel processing isn’t enabled for the next step, the

system determines the process pattern to be used and calls

the associated task. The service name configured in the

nonuser decision table is used to select a specific task or

populate attributes of the task container. If the process

pattern isn’t 99 (which is used to exit the loop), the system

loops back to the evaluate decision table to determine the

next step in the process. After execution of the process

pattern, the system updates the change request status,

date and time of the execution, processor, and result of the

task into the workflow container. These attributes combined

with the decision table entries are used to evaluate the next

step in the workflow.

Because the workflow template itself doesn’t have any

steps specific to a data model or type of change, and the

steps are determined by the decision table configuration,

this template allows a highly flexible way to design

governance processes. Agent determination supported by

the rule-based workflow template includes security roles

and special users (change request initiator and last

processor), which aren’t supported by the preconfigured

workflow templates. The rule-based workflow template can

also be extended by a set of BAdIs to add functionalities

that can’t be implemented by configuring the decision

tables. The upcoming section “Extending the Rule-Based

Workflow Template with Business Add-Ins” provides details

of the various BAdIs available.

Process Patterns Used in the Rule-Based Workflow

Template

The loop used in workflow template WS60800086 executes one

process pattern in each iteration. Selection of the process

pattern depends on the condition alias (described later in

this section) determined for the current step. Depending on

the process pattern, the system will call the corresponding

task in the workflow template. Following are the standard

process patterns and their functions:

01 UI Dialog

This process pattern is used to start dialog processing

task TS60807954. This process pattern can only be selected

by the system (and configured manually in the nonuser

decision table) when a record matching the condition alias

is found in the user agent decision table.

02 Call Synchronous Method

This process pattern is used to call a BAdI implementation

to implement a custom processing logic when none of the

standard process patterns provide the required

functionality. Task TS60807949 (system method) is called to

trigger the BAdI implementation. The filter value to search

for the BAdI implementation is read from column

SERVICE_NAME of the nonuser decision table. Refer to the

upcoming section “Extending the Rule-Based Workflow

Template with Business Add-Ins” for details.

03 Call Subworkflow

This process pattern is used to trigger a subworkflow

using the standard task TS60807944 (subworkflow for single

step workflow) to include processing steps defined in an

existing workflow as a part of the current workflow. The

subworkflow ID is read from column SERVICE_NAME in the

nonuser decision table.

04 Call Data Replication

This process pattern is used to initiate replication of

master data in the change request process after the

change request is activated by calling standard task

TS60807976 (change request replication). The system uses

the data replication framework to distribute the change

request.

05 Activation (Don’t Bypass Snapshot)

This process pattern is used to activate the change

request after final approval by calling standard task

TS60808002 (activate change request) with an empty value

for parameter IGNORE_SNAPSHOT_DIFF. If a parallel change

was made to the data record in the active area, the

system will detect the difference in the snapshot taken at

the time of creation of the change request and at

activation, and activation will fail to prevent overwriting

the changes in the active area that aren’t available in the

staging area.

06 Activation (Bypass Snapshot)

This process pattern is used to activate change request

after final approval by calling standard task TS6080802

(activate change request) with parameter

IGNORE_SNAPSHOT_DIFF set to X. If there are parallel changes

made to the same master data record in the active area,

these will be ignored and may be overwritten.

07 Validate Change Request

This process pattern is used to trigger validation of the

change request in the background and write the

validation log to the application log. Logs are accessible

from the UI application. Standard background task

TS75707952 (check change request) is used with this

process pattern.

08 Roll Back Change Request

If a change request is rejected and needs to be

withdrawn, this process pattern is called to remove the

master data records in the change request from the

staging area without copying them to the active area. The

status of the change request will be set to 06 (final check

reject rejected) to indicate the end of processing of the

change request. This process pattern uses standard

background task TS75707936 (discard change request).

98 Error

This process pattern is used to trigger error handling by

calling standard background task TS60807951 (default

handler).

99 Complete (Sub)Workflow

This process pattern is used to exit the loop processing in

the rule-based workflow template for both the main

workflow and the subworkflow. For the subworkflow, the

control will pass to the main workflow. Flag Workflow

Instance Complete in the workflow container will be set by

this task.

Decision Tables Used in BRFplus Applications for the

Rule-Based Workflow

In addition to the system-generated functions and data

structures that reflect the data model used by the change

request type, a set of decision tables are generated, and

these tables are configured to model the required process

pattern. Each decision table has a set of input columns (also

known as condition columns) and output columns (also

known as result columns). Input columns are used to search

for a record based on the data attributes read from the

context of the change request and workflow, and the output

columns determine the result of the process. The three

decision tables generated for each BRFplus application are

used together to determine the output, which is then used

by the workflow template to determine the next task,

agents, and container values. Each generated BRFplus

application contains the following three decision tables:

Single-value decision table

The single-value decision table generated by the system

has the name DT_SINGLE_VAL_<Change Reuqest Type> and

determines the flow between the change request steps,

including the parallel steps. This table reflects the process

flow as it determines the next step in the workflow

process based on the previous step, previous action, and

other parameters. The most important condition columns

used in this table are previous step and previous action.

Based on the values for these two columns and other

parameters, this table determines the next step and other

parameters, especially the condition alias that is used as

a condition column to search the other two tables.

Table 13.2 provides details of the single-value decision

table columns.

Column Type Details

Column Type Details

PREVIOUS_STEP Condition

column

Previous change request step.

PREVIOUS_ACTION Condition

column

Result of the previous step

(both dialog and background

step).

CR_PRIORITY Condition

column

Current priority of the change

request.

CR_REASON Condition

column

ID of the change request

reason.

CR_REASON_REJ Condition

column

ID the change request

rejection reason.

PARENT_STEP Condition

column

Previous change request step

from which a parallel workflow

is initiated; used in

combination with

PAR_AGT_GRP_NUM.

PAR_AGT_GRP_NUM Condition

column

Agent group number of

subworkflow generated from

the parent workflow. Each

subworkflow is another

instance of the rule-based

workflow using the same

template and BRFplus

application.

Column Type Details

COND_ALIAS Result

column

A key used to search the

condition columns of the other

two decision tables. This

allows linking the two tables

with this table.

NEW_STEP Result

column

Next step in the workflow.

NEW CR_STATUS Result

column

New change request status.

EXP_COMPLETE‐

_HOURS

Result

column

Expected hours in which the

next step should be

completed. If not, a system-

generated email notification is

sent.

MERGE_TYPE Result

column

Determines how the results of

the parallel steps should be

combined to determine the

single result value. Only value

B is supported, which calls a

BAdI implementation using the

filter value stored in column

MERGE_PARAM.

MERGE_PARAM Result

column

Filter value to select a BAdI

implementation to merge

results of parallel workflow

steps.

Column Type Details

DYNAMIC_AGT_SEL‐

_SERVICE

Result

column

Used as a filter value to

determine agents for the next

step using a BAdI

implementation instead of

using the user agent decision

table.

Table 13.2 Columns in the Single-Value Decision Table

User agent decision table

The user agent decision table generated by the system

has the name DT_USER_AGT_GRP_<Change Reuqest Type> and

determines the user agents for a condition alias and

which actions are available on the UI for the next step in

the process. This table has only one condition column

(COND_ALIAS) and it’s used to link the single-value decision

table with this table. Table 13.3 describes the columns of

the user agent decision table.

Column Type Details

COND_ALIAS Condition

column

Links the row in this table with the

single-value decision table having

the same value. This column is a

result in column in single-value

decision table.

STEP_TYPE Result

column

Step type for the next step. Step

type determines which

actions/buttons are available on

the UI.

Column Type Details

USER_TYPE Result

column

Type of the user agent specified in

column USER_VALUE. Possible values

are User, Organizational Unit,

Job, Position, Role, or Special

User.

USER_VALUE Result

column

Values of type identified in

USER_TYPE. This can be a single

value or a list. Special user values

such as INIT (initiator of the

change request) or LAST (processor

of the last step) can be

maintained.

Table 13.3 Columns in the User Agent Decision Table

Nonuser agent decision table

The nonuser agent decision table generated by the

system has the name DT_USER_AGT_GRP_<Change Reuqest Type>

and determines background steps associated with a

condition alias. This table has only one condition column

(COND_ALIAS), and it’s used to link the single-value decision

table with this table. Table 13.4 describes the columns of

the user agent decision table.

Column Type Details

Column Type Details

COND_ALIAS Condition

column

Links the row in this table

with the single-value decision

table having the same value.

This column is a result

column in the single-value

decision table.

AGENT_GROUP Result

column

Used to identify a branch in

parallel workflow processing.

One subworkflow is created

for each agent group.

PROCESS_PATTERN Result

column

Process pattern listed in the

“Process Patterns Used in the

Rule-Based Workflow”

section.

SERVICE_NAME Result

column

Value depends on the

process pattern. For example,

for the call system method

process pattern, this value is

used as a filter to search for

BAdI implementations.

Table 13.4 Columns in the Nonuser Agent Decision Table

Designing a Rule-Based Workflow

A rule-based workflow template makes extensive use of the

decision tables to control the flow of the process by

determining the next step based on the previous step and

result of the previous step. Designing a governance process

largely involves populating the decision tables with the

correct records so that the resulting process accurately

reflects the desired pattern. Decision tables can be prepared

using a spreadsheet and uploaded, but populating the

decision tables with correct data, especially correctly linking

the three decision tables with each other, requires careful

planning. The process typically starts with drawing the

outline of the process and then populating the outline with

the attributes, such as step number, action result, change

request status, condition alias, process pattern, and so on,

so that these values can then be easily translated into a set

of records. Figure 13.17 shows the outline of a process

implemented using the rule-based workflow.

Figure 13.17 Outline of a Process Implemented Using the Rule-Based

Workflow

Figure 13.18 shows the decision tables populated using the

data gathered from this outline diagram.

Figure 13.18 Decision Table Entries for the Preceding Process

The change request type used in this process is SUF1P1.

Figure 13.18 shows the single-value decision table

(DT_SINGLE_VAL_SUF1P1), user agent decision table

(DT_USER_AGT_GRP_SUF1P1), and nonuser decision table

(DT_USER_AGT_GRP_SUF1P1) generated by the system for this

change request type. The condition columns are shown with

a gray background, and the output columns are shown with

a green background. You’ll observe that the Condition

Alias column is a result column in the single-value decision

table, but it’s the only condition column in the other two

tables. An important observation is that the values

populated in the condition alias column in the single-value

decision table are provisioned in either the user agent

decision table or the nonuser agent decision table. Similarly,

all possible results of all the steps are provisioned in the

single-value decision table. This is necessary to ensure that

the rule-based workflow template will always be able to find

the next step based on the result of the previous step.

The process outlined in Figure 13.17 is a simple three-step

approval workflow process that starts when a requestor

submits a change request. Submission of a change request

is represented as a dialog task, and the step number for this

step is always defaulted to 00. The role assigned to this task

is requestor, and there is only one action possible—to

submit the change request. The requestor can also save the

request in draft status and submit later, but the workflow

doesn’t start until the change request is submitted.

The next step in the flow is to process or enrich the change

request by a data specialist. The step number for this step is

20, and the name of the step is Enrich. The output column

condition alias is set to PRC, and the next step is 20.

Because this is a dialog step, this condition alias is

provisioned in the user agent decision table. Because this

isn’t a parallel step, only one record with condition alias

equal to PRC is necessary, and user agent group is set to

001. The step type for this step is 9 because this step type

allows the specialist to either finalize the processing or

withdraw the change request. The agent type for this step is

security role, and the security role used is Z_MDG_DEMO_USER. At

runtime, users assigned to this role will receive a work item

to enrich or process the change request.

Once the processing is finalized by the specialist, the

change request is sent to an approver. The step for this task

is 90, the step name is Approve, and the condition alias is

APP. Because this step is triggered only when the result of

the previous step 20 is 05 (Finalize Processing), a row is

inserted into the single-value decision table with condition

column CR Previous Step populated as 00, and condition

column Previous Action populated as 05. The output

column condition alias is set to PRC, and the change

request status is set to 02. This status doesn’t allow

changes to the change request data records because an

approver can only approve or reject the changes requested

but not make further changes. This ensures that all changes

are always reviewed by at least two agents. Because this is

a dialog step, a record with condition alias PRC is

configured in the user agent decision table and the step

type is set to 02 (Enrich Change Request). This step type

allows the approver two actions: 03 (Approve) and 04

(Reject). The agent assignment for this step is like the

Enrich step.

After final approval of the change request by the approver,

the change request should be activated. This is configured

with one row in the single-user decision table with the

previous step as 90 (Approve) and previous action as 03

(Approve). The condition alias is ACT, and the next step

number is 91 (Activate). Because this is a background

step, a record is configured in the nonuser agent decision

table with condition alias ACT. The process pattern for

activation is 06 (Activation [Bypass Snapshot]).

Upon successful activation of the change request, the

system will set the result of the activation step as 31. An

entry is configured in the single-value decision table with

the previous step as 91 (Activate) and the previous action

as 31 (Success) with condition alias END. Because this

step is a background step, an entry is configured in the

nonuser decision table with condition alias END and process

pattern 99 (Complete Workflow). This process pattern will

end the rule-based workflow process.

At the processing step, the processor has the option to

withdraw the changes if the requested changes should not

be carried out. If the processor chooses to withdraw the

change request (action = 08), changes should be rolled

back. This a background step, and the process pattern is 08

(Roll Back Change Request). Similarly, at the approval step,

the approver has the option to reject the change request,

and it will be routed back to the specialist. An entry in

single-value decision table with the previous step as 90

(Approve) and the previous action 04 (Reject) is

configured for this routing. The condition alias for this step

is PRC, which is already configured in the user agent

decision table.

Extending the Rule-Based Workflow Template with

Business Add-Ins

Several BAdIs are available to extend the functionality of the

rule-based workflow template. Following is a list of available

BAdIs:

Rule Context Preparation for Rule-Based Workflow

(USMD_SSW_RULE_CONTEXT_ PREPARE)

This BAdI is used to add additional columns to the

decision tables in the system-generated BRFplus

application for the change request type and to populate

these columns at runtime using the attributes of the

change request and workflow context. Additional columns,

especially when used as condition columns allow the

designer to build a process flow that depends on the

values of these columns at runtime. For example, account

group can be added as a condition column in the single-

value decision table for customer and supplier master

data so that routing of the workflow can be based on the

account group of the customer or supplier.

Calling of System Method for Rule-Based Workflow

(USMD_SSW_SYSTEM_METHOD_CALLER)

This BAdI is used to call code to process a background

task. The system provides several process patterns to

execute common tasks, but if these tasks aren’t sufficient

to meet the requirements, this BAdI allows calling a

method of a class that implements the BAdI and passes

the change request data. The custom code can then use

the change request attributes and workflow process

attributes to execute the required action and pass back

the result of the step. This result will then be used to

determine the next step in the workflow process.

Dynamic Selection of Agent in the Rule-Based

Workflow (USMD_SSW_DYNAMIC_AGENT_SELECT)

This BAdI allows agent determination using custom code

instead of using the user or nonuser decision table. It can

also be used to enable parallel processing for a step at

runtime based on the attributes of the change request.

This BAdI is used if the agent determination logic is

implemented outside of the decision tables or the

decision table functionality isn’t sufficient to meet all the

requirements.

Handling of Parallel Results in the Rule-Based

Workflow (USMD_SSW_PARA_RESULT_HANDLER)

This BAdI is used to merge results of all subworkflows that

are started for a parallel step into a single result. The

system calls this BAdI implementation when all the

subworkflows are completed with a list of results of all

individual subworkflows. A typical implementation of this

BAdI is used to merge results of parallel approval steps

such that if all approvers have approved the previous

step, the result is set as Approved; otherwise, the result

of the step will be set as Rejected.

Check User Agent/Nonuser Agent Table for the

Rule-Based Workflow (USMD_SSW_CHECK_AGENT_TABLE)

This BAdI is used to implement dynamic checks in the

user agent or nonuser agent decision tables.

13.1.11 SAP Master Data Governance,

Consolidation and Mass Processing

SAP MDG supports consolidation of data from multiple

sources into a single source of data by combining and

comparing data from various sources into a single best

record. SAP MDG, consolidation and mass processing, also

supports updating several master data records together in a

single process. Both consolidation and mass processing use

a process template that allows an administrator to configure

various steps in the process and configure options for each

of the process steps. A typical SAP MDG, consolidation and

mass processing, process includes data loading, editing,

validating, and activating steps. A workflow template is

used to determine the user agents for these steps. Using

the workflow template allows the administrator to enforce

the four-eye principle for a process template. This ensures

that at least two different people are involved in

consolidation and mass processing of master data records

using the consolidation and mass processing module of SAP

MDG. SAP delivers workflow template WS54500001 for SAP

MDG, consolidation and mass processing. Figure 13.19

shows process templates delivered in the standard system

and assignment of the workflow template to the process

template.

Figure 13.19 Process Templates Used in SAP MDG, Consolidation and Mass

Processing

SAP MDG, consolidation and mass processing, uses business

object BUS2240. Use Transaction SWE2 to activate event

linkage for the STARTED event of this object. This will allow the

system to start the workflow template assigned to the

consolidation process template when a consolidation

process is created. Figure 13.20 shows the event linkage for

event STARTED of business object BUS2240.

Figure 13.20 Event Type Linkage for the STARTED Event of Business Object

BUS2240

13.2 Business Partner Workflows

In SAP, a business partner is an organization, person, or group of people or organizations in

which your company has a business interest. A business partner can be a customer,

supplier, bank, government entity, and so on. A business partner can take multiple roles as

well. It’s common to have a business partner as both a customer and a supplier. Business

partner master data is used in sales for processing sales orders, in purchasing for

processing purchasing orders with suppliers, in accounting for managing account

receivables and payables, and in human resources for modeling employees as suppliers.

Business partner data is also used in credit analysis, background checks, and risk and

compliance management. These are just a few examples of how a business partner is used

in SAP. Having a single repository of business partners is essential to ensure that all of

these processes use the same set of attributes and that errors arising out of mismatches in

data records are minimized.

13.2.1 Business Partner Data Model and Approach

A business partner data model consists of general data, customer data, and supplier data.

The general data of a business partner consists of name and address data, tax numbers, ID

numbers, roles, payment cards, credit profile and credit segment data, and bank accounts.

Customer data of a business partner consists of customer general data, sales data, and

company code data. Supplier data of a business partner consists of supplier general data,

purchasing organization data, and company code data. Depending on the roles assigned to

a business partner and business processes implemented in SAP, various attributes of the

business partner master data are populated. For example, if a business partner is a

customer and sales and distribution business processes are implemented in SAP, customer

general data and sales data will be populated along with business partner general data. If

accounts receivable processes are implemented in SAP, company code data for the

customer role will also be populated. Figure 13.21 provides an overview of business partner

data model in SAP MDG.

Figure 13.21 Business Partner Data Model Used in SAP MDG

In SAP S/4HANA, a business partner approach is mandatory, that is, all customers and

suppliers must be created as business partners, and changes to the customer and supplier

master data can only be done by updating the business partner master data and

synchronizing the business partner master data with customer and supplier master data

using the customer/vendor integration (CVI) functionality. In SAP ERP 6.0 and earlier

versions, the business partner approach is available, but it’s optional. Customer and

supplier data can be created and managed without first creating a business partner. SAP

MDG uses business partners as the main object for updating business partners as well as

customer and supplier master data. SAP MDG always uses the business partner approach

for governance of business partner master data.

13.2.2 Change Requests for Business Partner Master Data

SAP MDG provides three sets of change requests for governance of business partner

master data: change requests for business partner data, change requests for customer

data and change requests for supplier data. Depending on how the business partner is

used in the organization, one or more of these change requests can be used to manage

business partner master data. Table 13.5 provides a list of change request types and linked

workflow templates for the business partner data model.

Type of Change Request Description Workflow

BP1P1 Create Business Partner WS60800086

BP1P2 Create Bus. Partner w. Hry. Assignment WS60800086

BP2P1 Process Business Partner WS60800086

BP2P2 Process Bus. Partner w. Hry. Assignment WS60800086

BP5P1 Block/Unblock Business Partner WS60800086

BP6P1 Mark Business Partner for Deletion WS60800086

BPCC1 Process Business Partner Cleansing Case WS60800086

BPHP1 Process Business Partner Hierarchies WS60800095

BPLP1 Business Partner Initial Load WS72100006

BPMP1 Business Partner Mass Maintenance WS60800095

CUST1P2 Create Customer (Parallel WF) WS54400001

CUST1P3 Create Customer w. Hierarchy Assignment WS54300003

CUST2P1 Process Customer WS54300003

CUST2P2 Process Customer w. Hierarchy Assignment WS54300003

CUST5P1 Block/Unblock Customer WS54300003

CUST6P1 Mark Customer for Deletion WS54300003

CUSTMRP1 Multi-Processing for Customer Financials WS54300003

CUSTMRP2 Multi-Processing for Customer Sales WS54300003

SUPPL1P1 Create Supplier WS54300005

SUPPL1P2 Create Supplier w. Hierarchy Assignment WS54300003

Type of Change Request Description Workflow

SUPPL2P1 Process Supplier WS54300007

SUPPL2P2 Process Supplier w. Hierarchy Assignment WS54300003

SUPPL5P1 Block/Unblock Supplier WS60800059

SUPPL6P1 Mark Supplier for Deletion WS60800068

SUPPMRP1 Multi-Processing for Supplier Financials WS54300003

SUPPMRP2 Multi-Processing for Supplier Purchasing WS54300003

Table 13.5 List of Change Request Types Used in Business Partners and the Associated Workflow Template

Note

Change request types for business partners can also be used for governing changes to

customers and suppliers.

13.2.3 Workflow Templates Used in Business Partner Change Requests

SAP has provided some preconfigured workflow templates based on the industry best

practices for governance of business partner master data records. For example, change

request type CUST2P1 (process customer) implements typical governance processes used in

management of customer master data. These workflow templates have a preconfigured set

of tasks that are executed in a specific order depending on the type of data that is

undergoing changes and action taken by users who are processing the change requests.

After each task is executed, the template will determine the next step to be executed and

the status of the change request based on the action taken in the previous step. A key

aspect of these templates is that they allow users to be assigned using Customizing tasks

in Transaction MDGIMG. In some cases, a separate Web Dynpro application is provided to

configure a complex agent assignment scenario.

In addition to preconfigured workflow templates, a rule-based workflow template is used for

some change request types. This is a generic workflow template that uses a set of decision

tables to control the creation of work items and users that are assigned to execute these

work items. In the following sections, we’ll discuss each of these templates in detail.

Note

Multiple workflow templates may have similar steps and process flows. This is because

workflow templates are added when business functions for different SAP MDG domains

are activated and related Business Configuration Sets (BC Sets) are imported. If BC Sets

for business partners, customers, and suppliers are imported, multiple workflow

templates may be present in the system with similar configurations.

Workflow Template WS60800086

Workflow template WS60800086 is the rule-based workflow template used by change request

types BP1P1, BP1P2, BP2P1, BP2P2, BP5P1, BP6P1, BPCC1, and BPCC2. Refer to Section 13.1.10 for a

detailed description of the rule-based workflow template.

Workflow Templates WS60800095 and WS72100006

Workflow template WS60800095 is used by change request types BPHP1, BPHP2, BPMP1, and BPMP2.

These change request types are used to maintain business partner hierarchies and mass

maintenance of business partners.

This is a simple three-step sequential approval process workflow. The workflow starts when

a requestor submits a change request. The system performs validation of data in the

background, and the results are written to a validation log. The change request is then

routed to a data specialist who performs manual validations. If any further changes are

required, the request is sent back to the requestor. If all changes are correct, the request is

approved and sent to an approver. The approver then performs additional checks and can

either approve or reject the request. If the request is rejected at any point, it’s sent back to

the requestor who can then make further changes and resubmit the request or withdraw

the request if the changes can’t be approved.

Once the changes are finally approved, the system will activate the changes. If there are

any errors during the activation, the request is routed to a data steward who can decide if

the change request should be activated by bypassing the snapshot or should be sent for

revision. If the change request could be activated by bypassing snapshot, the system will

write change documents to record the changes. If the change request could not be

activated even after bypassing the snapshot, the system will route the request to the data

steward who can then send it back to the requestor with a note explaining what additional

changes should be made before the change request can be activated. If the change

request is withdrawn by the requestor, changes are rolled back, and no change documents

are written. Through the process, the system will maintain an audit trail of workflow

process steps. Figure 13.22 shows the process diagram for workflow template WS60800095.

Agent determination for workflow templates WS60800095 and WS72100006 is determined using a

BRFplus table. Agents are determined based on a combination of change request type,

change request step, and a flag indicating if the central data of the business partner was

changed. SAP has delivered BRFplus application MDG_BS_ECC_SUPPLIER_WORKFLOW, which has

function AGENT_DETEMINATION that is called by the agent determination task of the workflow

template. This function uses the GET_AGENT decision table in the application to determine the

agents.

Figure 13.22 Workflow Process Diagram for WS60800095 and WS72100006

To assign agents, follow menu path MDGIMG • Master Data Governance, Central

Governance • Central Governance for Supplier • Workflow • Assign Processor to

Change Request Step Number in BRFplus for Supplier. Figure 13.23 shows an

example of an agent determination using a BRFplus decision table. This example shows

how agents are determined for change request type BPHP1. Each step in the change request,

the system will determine the object type and object ID using the decision table. Object

types can be Organizational Unit, Position, Job, or a User ID. All users assigned to the

specified position, job, or organizational unit will be determined as agents for the workflow

step.

Figure 13.23 Example of Agent Determination Using a BRFPlus Decision Table

Workflow Templates WS54400001 and WS54300005

Workflow template WS54400001 is used by change request type CUST1P2, and workflow

template WS54300005 is used by change request type SUPPL1P1. Change request type CUST1P2 is

used to create a customer master record, and change request type SUPPL1P1 is used to

create a supplier master record. Both of these workflow templates use parallel workflows to

trigger multiple data enrichment and approval steps to speed up the master data creation

process. Process flow and agent determination are similar for both of these templates.

The process starts when a requestor submits a request to create a customer master data or

vendor master data. A master data approver then receives a work item to approve the

central data such as names, addresses, bank details, tax numbers, and so on. If any

changes are required, the request can be sent back to the requestor who can either update

the change request or withdraw the change request. If no further updates are required, the

approver can approve the request.

After this step, data specialists for financial, sales, and purchasing data receive work items.

Financial specialists receive work items for both customer and supplier master data. Sales

specialists receive work items for customer master data, and purchasing specialists receive

work items for supplier master data. The number of work items created is based on the

number of company codes, sales areas, and purchasing organizations configured for the

customer or supplier.

One work item is created for each company code, sales area, and purchasing organization

each. All of these work items are created in parallel so that all data specialists can enrich

the change request at the same time. This ensures a speedy processing of master data

creation. Each data specialist task is followed by an approval task where a data approver

can approve or reject the data provided by the data specialist. If the changes are rejected,

the data specialist gets a work item to rework the data entered and the same can be

resubmitted to the approver. Because each data specialist is working on only one piece of

company code, sales area, or purchasing organization data, there is no option to withdraw

the request at this step.

Once all approvers approve the changes, the change request will be activated. If there is

no error in the activation, the process is complete. If there is an error in the activation of

the change request, a data steward gets a work item and can decide to retry the activation

process or send the request back to the requestor who can either make further changes or

withdraw the request.

A subworkflow (WS54400002 for customer master data and WS54300006 for supplier master data)

is used for the data maintenance and approval steps. This allows the main workflow to

create multiple parallel instances for the subworkflow for each of the company codes, sales

areas, and purchasing organizations. While the subworkflows are active, the main workflow

will wait for all the subworkflows to be completed. When all subworkflows are completed,

the main workflow will resume.

Figure 13.24 shows the process diagram for workflow templates WS54400001 and WS54300005.

Figure 13.24 Process Diagram for Workflow Templates WS54400001 and WS54300005

Agent determination for workflow templates WS54400001 and WS54300005 is determined using a

BRFplus table. For customer master data, agents are determined based on a combination

of change request type, change request step, sales area, company code, and central

master data change flag. For supplier master data, agents are determined based on a

change request type, change request step, company code, purchasing organization, and

central master data change flag.

SAP has delivered BRFplus application MDG_BS_ECC_SUPPLIER_WORKFLOW for the supplier master

data workflow template. This BRFplus application has function AGENT_DETEMINATION, which is

called by the agent determination task of the workflow template. This function uses

decision table GET_AGENT in the application to determine the agents. To assign agents, follow

menu path MDGIMG • Master Data Governance, Central Governance • Central

Governance for Supplier • Workflow • Assign Processor to Change Request Step

Number in BRFplus for Supplier.

SAP has delivered BRFplus application MDG_BS_ECC_CUSTOMER_WORKFLOW for the customer master

data workflow template. This BRFplus application has function AGENT_DETEMINATION, which is

called by the agent determination task of the workflow template. This function uses

decision table GET_AGENT in the application to determine the agents. To assign agents, follow

menu path MDGIMG • Master Data Governance, Central Governance • Central

Governance for Customer • Workflow • Assign Processor to Change Request Step

Number in BRFplus for Customer.

Table 13.6 shows an example of an agent assignment using the BRFplus decision table. In

this decision table, agents are determined based on a change request type, change request

step, company code, sales organization, distribution channel, division, and central data

changed flag. When a change request is submitted, the requestor will specify the sales

areas (a combination of sales organization, distribution channel, and division) and company

codes relevant for the customer master data. The system will create one work item for

each sales area and company code. Agents are determined for each work item separately

using the BRFplus decision table. In the following example, the system will determine

USER1 as the agent for company code C001 and USER2 as the agent for company code

C003. Note that the BRFplus decision table supports multivalue attributes and patterns. For

example, USER5 is determined as the user for both company codes C001 and C003 for step

6. By carefully configuring the decision table, a complex agent determination logic can be

implemented.

Change

Request

Type

Change

Request

Step

Company

Code

Sales

Organiza‐

tion

Distribu‐

tion

Channel

Division Central

Data

Change

Object

Type

Obje

ID

CUST1P2 1

CUST1P2 4 C001 US USER

CUST1P2 4 C003 US USER

CUST1P2 5 S001 01 01 US USER

CUST1P2 5 S002 01 01 US USER

CUST1P2 6 C001;

C003

US USER

CUST1P2 6 S001;

S002

US USER

CUST1P2 7 US USER

Table 13.6 Agent Assignment for Workflow Template WS54400001 Using the BRFplus Decision Table

The agent determination table can be prepared using Excel and uploaded into the system.

Existing agent determination table entries can be downloaded into Excel for further editing.

Workflow Template WS54300003

Workflow template WS54300003 is a basic two-step approval workflow template used in

scenarios where the four-eye principle of governance needs to be enforced without a

complex process. This workflow template is used by change request types CUST1P3, CUST2P1,

CUST2P2, CUST5P1, CUST6P1, CUSTMRP1, CUSTMRP2, SUPPL1P2, SUPPL2P2, SUPPMRP1, and SUPPMRP2. These

change request types are used to update existing customer/supplier master data, block or

delete customer/supplier master data, and process multiple customer/supplier master data

records in a single change request.

The process starts when a requestor submits the change request. The change request is

routed to an approver who can either approve or reject the change request. If the change

request is rejected, it’s routed back to the requestor who can make further changes and

resubmit the request or withdraw the request. If the request is resubmitted, it’s routed to

an approver for approval. If the request is approved, the system will try to activate the

changes. If the changes are activated successfully, the process ends. If there is any error

during the activation, the system will write to the activate log and route the request to a

data steward. The data steward can review the log, and if the underlying error is already

resolved, can retry activation. If the error can’t be resolved, and further changes are

required, the data steward can route the request to the requestor. The process will resume

as before. Figure 13.25 shows the process diagram for this workflow template.

Figure 13.25 Workflow Process Diagram for Template WS54300003

Workflow template WS54300003 uses agent determination rule 75700139 to determine agents

for work items created for all the dialog tasks used in this template. This rule uses SAP

MDG Customizing to determine agents for each step of the workflow. To set up agents for

various steps in the workflow, call Transaction MDGIMG and follow menu path Master

Data Governance, Central Governance • General Settings • Process Modeling •

Workflow • Other MDG Workflows • Assign Processor to Change Request Step

Numbers (Simple Workflow). Figure 13.26 shows an example of agent assignment for

change request type CUST2P1, which uses this workflow template.

Agents are assigned based on the change request type and change request step. Agents

can be assigned as users, organization units, jobs, or positions. An organization structure

must be created using Transaction PPOMW, and organization units, jobs, or positions

created in this structure can be used as agents in this Customizing activity. If multiple users

are assigned to an organization unit, job, or position, all users receive a work item, but only

one of the users must act. Once the work item is processed by one of the users, other

agents can’t process the same work item. User IDs can be assigned as agents, as shown in

Figure 13.26. Typically, multiple users are assigned as processors of work items to ensure

speedy processing of the work items. To assign multiple user IDs as agents, create one row

for each user in this table, and the system will assign the work item to all the users so any

one of them can process the work item.

Figure 13.26 Agent Assignment for Workflow Template WS54300003

Workflow Templates WS54300007, WS60800059, and WS60800068

Workflow templates WS54300007, WS60800059, and WS60800068 are used by change request type

SUPPL2P1, SUPPL5P1, and SUPPL6P1, respectively, to approve changes to supplier master data,

including blocking supplier data and marking supplier data for deletion. This workflow

template provides implementation of the four-eye principle and parallel work items for

central, financial, and purchasing organization data changes.

The process starts when a requestor submits the change request to update the supplier

master data. Depending on the type of data that is changed, the system creates one or

more parallel work items. The system creates one work item for each company code and

each purchasing organization data item that is changed, blocked, or marked for deletion,

and one work item for central data if the central data is also changed or blocked in the

change request. These work items are assigned to the respective agents, and all work

items can be processed in any order. Each of these work items can be assigned to multiple

agents, and only one agent must act for each work item. If any of the work items are

rejected, all other approval work items are logically deleted (i.e., work items are marked for

deletion, and no processing is possible, but the work item itself exists in the system), and

the request is sent back to the requestor.

The requestor has an option to resubmit the request or withdraw the request. If the

requestor resubmits the request, the system will create another set of work items and

assign them to the respective agents. Depending on the data that is changed in the revised

request, one or more approvers will receive a work item to approve, even if they have

approved the same request before and there is no change to the data that they have

approved. Once all approvers approve the change request, the system will activate the

change request. If the change request can be activated successfully, the process will end. If

there is any error during the activation step, a work item will be created and assigned to a

data steward who can then try activation or send the request back to the requestor.

Figure 13.27 shows the workflow process diagram for workflow template WS54300007.

Figure 13.27 Workflow Process Diagram Template for WS54300007

Agent determination for workflow template WS54300007, WS60800059, and WS60800068 is

determined using a BRFplus table. Agents are determined based on a change request type,

change request step, company code, purchasing organization, and central master data

change flag.

SAP has delivered BRFplus application MDG_BS_ECC_SUPPLIER_WORKFLOW for the supplier master

data workflow template. This BRFplus application has function AGENT_DETEMINATION, which is

called by the agent determination task of the workflow template. This function uses

decision table GET_AGENT in the application to determine the agents. To assign agents, follow

menu path MDGIMG • Master Data Governance, Central Governance • Central

Governance for Supplier • Workflow • Assign Processor to Change Request Step

Number in BRFPlus for Supplier.

Table 13.7 shows an example of an agent assignment using a BRFplus decision table. In

this decision table, agents are determined based on a change request type, change request

step, company code, purchasing organization, and central data changed flag. When a

change request is submitted, the system will analyze the type of data that is changed and

create one work item for each company code and purchasing organization level data item

that is changed. Additionally, if the central data is changed, one work item for central data

will be created.

In the example in Table 13.7, the system will determine USER1 as the agent for the

approval work item for central data. For company code 0001, agent FINUSER1 will be

selected and FINUSER2 will be selected for all other company codes. If purchasing

organization level data was changed, the system will determine user PURUSER1 as the

agent for purchasing organization A001, and for all purchasing organizations with IDs

starting with “A”, the system will determine user PURUSER2 as the agent. By carefully

configuring the decision table, a complex agent determination logic can be implemented.

Table 13.7 shows how the agent determination criteria can be populated in an Excel

spreadsheet and uploaded to the BRFPlus application.

Type Step Company

Code

Purchasing

Organization

Central Data

Changed Flag

Object

Type

ID

=SUPPL2P1 =01 =X US USER1

=SUPPL2P1 =01 =0001 US FINUSER1

=SUPPL2P1 =01 <>0001 US FINUSER2

=SUPPL2P1 =01 =A001 US PURUSER1

=SUPPL2P1 =01 Starts with “A”;

exclude =A001

US PURUSER2

Table 13.7 Agent Assignment for Template WS54300007, WS60800059, and WS60800068.

13.3 Finance Workflows

SAP MDG, Financials allows you to govern creation and

changes to the financial master data. Financial master data

that is typically under governance includes general ledger

accounts, cost centers, and profit centers. In addition to

these commonly governed master data objects, other

master data objects that can be governed in SAP MDG

include cost element, financial reporting structure,

company, and consolidation entities. The following provides

a brief description of some of the most governed master

data objects in financials:

General ledger accounts

The general ledger is the most fundamental structure for

recording financial information about a business. A

general ledger account is an item within the general

ledger. General ledger accounts are used to record

different types of financial transactions and their values.

Most of the data that is reported in a financial report is

derived from general ledger accounts.

Cost center

During the normal course of business, every organization

incurs costs. The cost center is a master data object in

controlling that represents a delimited location where

costs occur. These costs can include payroll costs, rent

and utility costs, or any other costs relevant to a cost

center. The posting and assignment of costs to cost

centers enables managerial accounting and controlling of

costs.

Profit center

A profit center is a management-oriented organizational

unit used for internal control purposes. Structuring your

organization as hierarchies of profit centers enables you

to assign responsibility related to revenues and costs.

Profit centers can be viewed as companies within a

company.

13.3.1 Finance Data Model

SAP MDG provides a standard data model called 0G to

govern financial master data entities. This data model

includes entities such as chart of accounts, general ledger

account, company code, cost center, cost center groups and

cost center hierarchies, profit center groups and hierarchies,

and so on. Many of these entities are related to each other.

For example, a cost center is assigned to a profit center so

there is a relationship between cost center and profit center.

Relationships are used to link these entities together.

Figure 13.28 shows an overview of all the entities in the

finance data model for which a change request can be

created.

Figure 13.28 Entities and Relationships in the Finance Data Model in SAP

MDG

Entities in the finance data model can be placed into three

broad groups: accounting entities, controlling entities, and

consolidation entities. Accounting entities include general

ledger account, chart of account, financial reporting

structure, and company. Entities in controlling include profit

center, cost center, and their groups and hierarchies. Unlike

the business partner data model, the finance data model

has many entities for which a change request can be

created. Finance data models also use many hierarchies,

and a separate entity and change request types are used for

management of hierarchies. For example, cost centers and

profit centers are organized as hierarchies, and each cost

center or profit center can be assigned to a hierarchy.

13.3.2 Change Request Types in the Finance

Data Model

SAP delivers change request types for each of the

create/change/delete operations for all the entities.

Additionally, change request types are available for

processing hierarchies of cost and profit centers, financial

reporting structure, and consolidation group hierarchy. Each

change request type is associated with a workflow template

that determines the number of steps in the process, the

agents that are assigned to execute these steps, and the

order in which these steps are executed.

A key aspect of financial data is that multiple types of

financial master data records are often created or updated

together, and these changes are approved as a single unit

and distributed as a single unit. Either all changes are

approved or all are rejected to ensure that various master

data records are consistent with each other.

To facilitate maintenance of multiple types of records

together, SAP has delivered four types of change requests,

one change request each for accounting entities, controlling

entities, and consolidation entities, and then one change

request that allows changes to all financial master data

records. Depending on how financial master data changes

are governed, change requests for individual entities,

change requests for multiple entities, or a combination of

these two can be used.

13.3.3 Workflow Templates Used in Finance

Change Requests

There are two types of workflow templates used in change

requests in the finance data model: simple workflow and

advanced workflow. An extended workflow template is also

delivered by SAP. However, this template isn’t configured as

the default template for any of the change request types. In

the following sections, we’ll look at the two workflow

templates for the simple and advanced workflows.

Workflow Template WS75700040

Workflow template WS75700040 implements the simple

workflow process pattern consisting of a submission step

followed by two approval steps. This template is used by all

change request types except for change request type 0G_ALL,

which uses the extended workflow template. Validation and

approval are done at the change request level, and all

records are validated and approved as a single unit. A single

work item is created for each step of the workflow. This

template is used by change request types to create or

update general ledger accounts, cost centers, profit centers,

financial reporting structures, and so on.

The process starts when a requestor submits a request. The

request is routed to a processor who validates all the data

entered in the request and ensures that requested master

data records can be created and distributed to all systems.

The processor has the option to reject the change request

and send it back to the requestor if any changes are

required. If the processor finalizes change request

processing, the request is routed to an approver who

provides the final approval. Once the change request is

finally approved, changes are activated and distributed. The

process ends once changes are approved and distributed. At

any point, the request can be rejected and sent back to the

requestor with a note explaining why the change request is

being rejected and changes are required so that request can

be approved. The requestor has the option to make the

required changes and resubmit the request or withdraw the

request if the required changes can’t be made. If the

request is withdrawn, all changes are rolled back.

Figure 13.29 shows the steps in the workflow process for

template WS75700040.

Figure 13.29 Workflow Process Diagram for Template WS75700040

A key observation for this workflow template is that all

changes are approved or rejected as a single unit by a

single user agent at each step. This workflow template is

used for creation or updating of master data records of a

single type, that is, creation or mass change of general

ledger accounts or cost centers. This workflow template is

also used by change request types that allow master data

entities from the same group; for example, change request

type 0F_FIN allows changes to all financial accounting

entities such as general ledger accounts, financial reporting

structures, and companies using a single change request.

Agents for workflow template WS75700040 are determined

using an SAP MDG Customizing table. To set up agent

determination for a simple workflow template, call

Transaction MDGIMG, and follow menu path Master Data

Governance, Central Governance • General Settings •

Process Modeling • Workflow • Other MDG Workflows

• Assign Processor to Change Request Step Number

(Simple Workflow). Figure 13.30 shows an example of

agent assignment for change request type CCT2P1.

Figure 13.30 Agent Assignment for Workflow Template WS75700040

Agents are assigned based on a change request type and

change request step number. Agents can be assigned as

users, organization units, jobs, or positions. An organization

structure must be created using Transaction PPOMW, and

organization units, jobs, or positions created in this structure

can be used as agents in this Customizing activity. If

multiple users are assigned to an organization unit, job, or

position, all users receive a work item, but only one of the

users must act.

Workflow Template WS75700027

Workflow template WS75700027 implements the advanced

workflow process pattern consisting of a submission step

followed by four approval steps. It supports parallel

processing at each of the approval steps by creating

multiple work items and assigning these work items to one

or more agents. All work items created for a step can be

processed in any order. Change request type 0G_ALL, which

allows changes (including creation) to all types of financial

master data entities, uses the advanced workflow template.

The process starts when a requestor submits a request. This

workflow template is used by the 0G_ALL change request type

that supports changes to all types of financial master data

objects. Typically, this change request is created as a mass

change request where multiple objects that are linked to

each other are created or updated together. Once the

change request is submitted, the system determines one or

more agents for evaluation depending on how many agents

are configured for this step. If there are multiple agents

configured for this step, the system creates one work item

for each agent (or agent group), and all work items can be

executed in parallel in any order. If any of the evaluators

rejects the request, all other work items that aren’t yet

processed are logically deleted, and the request is sent back

to the requestor for further changes.

When all evaluators approve, the request is sent for

approval. After approval, the request is sent to a processor

who will then make sure that all requested changes can be

executed and makes additional changes to the records, if

required. Once the request is successfully processed, it’s

sent for the final check. Once the final check is approved,

the request is activated and distributed. The process ends

after successful activation of the changes. At any point, the

request can be rejected and sent back to the requestor. The

requestor can make further changes as suggested by the

evaluators or processors and resubmit the request or

withdraw it if the suggested changes can’t be made. If the

request is withdrawn, changes are rolled back, and the

process ends. Figure 13.31 shows the process diagram for

the advanced workflow template.

Figure 13.31 Process Diagram for Advanced Workflow Template

WS75700027

Agents for workflow template WS75700040 are determined

using an SAP MDG Customizing table. To set up agent

determination for a simple workflow template, call

Transaction MDGIMG and follow menu path Master Data

Governance, Central Governance • General Settings •

Process Modeling • Workflow • Other MDG Workflows

• Assign Processor to Change Request Step Number

(Simple Workflow). Agents are assigned based on a

combination of change request type and step number. For

the evaluation step, multiple rows can be created, and the

system will create one parallel work item for each row for

this step. For other steps, only one work item is created. If

multiple agent assignment entries are created in this

Customizing table, the system will assign all the agents to

the same work item, and any one agent can process the

work item.

13.4 Material Workflows

Master data governance for materials allows you to govern

creation of new materials and changes to existing material

master data. There several different types of materials, and

different industries use different types of materials.

Governance processes also vary widely across industries,

and there is no standard process that is followed across

various industries. There are no preconfigured workflow

templates available in SAP MDG for material master data.

Instead, organizations use the rule-based workflow template

(WS60800086) to build governance process patterns.

Section 13.1.10 provides details on the rule-based workflow

template.

13.5 Summary

This chapter provides a detailed description of how SAP

Business Workflow is used to implement governance

processes using SAP MDG. It covers the different types of

master data records that can be governed using SAP MDG

and key SAP MDG concepts such as change requests and

change request steps. The chapter covers the preconfigured

workflow templates provided by SAP for creating and

changing business partners, customers, suppliers, and

financial master data records. For each workflow template, a

process diagram and agent determination strategy are

provided. This chapter also provides a detailed description

of the rule-based workflow template and the use of the

BRFplus application, including decision tables used by the

rule-based workflow template.

With the insights gained in this chapter, you’ll be able to

appreciate how SAP Business Workflow is used in real-world

applications by various organizations across different

industries.

Part II

Flexible Workflow in SAP S/4HANA

In this part, you will learn to use flexible workflow in SAP

S/4HANA. This part will compare flexible workflows to

classic workflows, describe standard and custom

development scenarios, and teach you to set up standard

workflows and develop custom workflows with step-by-

step instructions.

14 Introduction to Flexible

Workflow

SAP has introduced flexible workflows as an

innovative and efficient way of designing the flow of

sequential actions in SAP S/4HANA to meet industry

standard digitalization requirements rapidly. Flexible

workflows simplify the approval process with no

code/low code efforts. It provides flexibility to

business users to configure workflow templates

based on predefined standard scenarios without the

need of a developer. Flexible workflow is the default

workflow engine in SAP S/4HANA.

Flexible workflow is a framework introduced in SAP S/4HANA

as part of the SAP S/4HANA workflow engine. It allows

developers to create simple workflow scenarios and allows

functional/business process specialists to model the process

flow very easily by using SAP Fiori apps.

Flexible workflows support both dialog approval and

background execution of sequential business processes. The

flexible workflow is based on a set of predefined

implementation objects, such as workflow scenarios,

activities, start and step conditions, and agent

determination rules. It integrates the functions of email

notification, deadline overdue monitoring, and exception

handling during approval. The flexible workflow framework

is tightly coupled with the new SAP Fiori user experience

(UX) framework. Consultants and business users should

understand how to work with SAP Fiori apps to use the

benefits of flexible workflows.

SAP has clearly segregated scenario development and

scenario modeling. Scenario development will be done by

developers in the backend system, and the same scenario is

modeled per business flow by using the SAP Fiori app called

Manage Workflows. By using this app, functional consultants

and business process specialists can model single-step and

multistep approval processes very easily. They can even

configure start conditions to start the flow, assign agents

who act on the process, define exception handling, send

email notifications if a work item is overdue, and so on. The

Manage Workflows app provides lot of flexibility to business

users to simplify/model their process flow, which were

configured at the code level by developers in classical

workflows.

SAP tightly integrated the approval process with the My

Inbox app. All flexible workflow work items will be routed

and available in the My Inbox app, so approvers can check

their work items in their My Inbox app and take appropriate

action based on the workflow setup.

The purpose of this chapter is to teach you how to use

flexible workflows in day-to-day approval scenarios. To

accomplish this, we’ll explain the basic configuration,

required authorizations, and required SAP Fiori apps to

develop and model flexible workflows. In addition, we’ll

compare its features with classical workflows and walk

through one custom flexible workflow scenario. We’ll also

explain simple troubleshooting techniques to check in case

any issues arise. We’ll cover the end-to-end approver

scenario by integrating with My Inbox and also touch on the

transport process to move scenarios across the system

landscape.

14.1 Authorizations and SAP Fiori

Applications Required for

Development

Different users need different accesses and SAP Fiori roles to

work on flexible workflows. You can segregate authorizations

based on user roles and details as mentioned in this section.

Table 14.1 and Table 14.2 provide details on important SAP

Fiori apps and their relevant technical/business catalogs

required for different personas. You can submit a request to

your security team for access to these apps based on your

role in the project:

Developers

Developers require all workflow-relevant authorizations. In

addition to workflow access, they need access to new

Transaction SWDD_SCENARIO (Scenario Editor) to work on

flexible workflow scenarios, and they need SAP Fiori app

access (see Table 14.1) as well.

Developers should also have authorization to access

OData service SWF_FLEX_DEF_SRV. SAP released SAP Note

3100365, which has all the required role details.

SAP Fiori App Technical/Business

Catalog

SAP Fiori App Technical/Business

Catalog

Manage Workflow Scenarios SAP_BASIS_TCR_T

Manage Workflows SAP_BASIS_TCR_T

Configure Software Packages SAP_BASIS_BC_EXT

Register Extensions for

Transport

SAP_BASIS_BC_EXT

Maintain Email Templates SAP_BASIS_TCR_T

Manage Teams and

Responsibility

SAP_CA_BC_RSM

Table 14.1 Developers: Apps and Catalogs

Business process specialists and functional

consultants

These people mainly configure workflow templates by

using the Manage Workflows app with predefined

scenarios. They need all the apps and required roles listed

in Table 14.2.

SAP Fiori App Technical/Business

Catalog

Manage Workflows SAP_BASIS_TCR_T

My Inbox SAP_BR_MANAGER

Manage Teams and

Responsibility

SAP_CA_BC_RSM

Table 14.2 Business Process Specialists: Apps and Catalogs

Line approvers

These are actual business users who check work items in

the My Inbox app and take appropriate action. They need

the My Inbox app access in addition to their business roles

(see Table 14.3).

SAP Fiori App Technical/Business Catalog

My Inbox SAP_BR_MANAGER

Table 14.3 Business Users: Apps and Catalogs

Note

This section discussed minimum access/SAP Fiori apps for

different personas, and you’ll have to work with your

security team to get any other roles/access required

during the implementation phase.

14.2 Flexible Workflow Scenarios

You’ll come across different approval scenarios in your day-

to-day business activities. SAP had provided many scenarios

to support these approval processes such as purchase order

approvals, journal entry approvals, invoice approvals,

service sheet entries, sales order flows, and so on. This list

goes on and on, and there are many out-of-the-box

scenarios available in the system that the business process

specialist can check and make use of. However, every

organization has some unique requirements that can’t be

met by using standard scenarios. In these cases, they can

plan for custom scenarios.

Flexible workflows fall into two broad categories: standard

flexible scenarios and custom flexible scenarios. We’ll

explain these two categories in the following sections at

length, so you’ll be comfortable working in both standard

and nonstandard scenarios. We’ll also spend time

comparing the two scenarios to help you know how to

choose between them.

14.2.1 Standard Flexible Scenarios

Many classical workflow templates are available in the

system for processes such as invoice approval, purchase

requisitions approval, and so on to cater to many such

approval flows over the years. SAP provides similar flexible

workflow templates for many of those standard approval

flows in SAP S/4HANA, and this list is growing day by day.

SAP has provided exhaustive help documentation as well to

make use of these templates.

When business process specialists/functional consultants

get any requirements for approval flow in standard

transactions, they can quickly configure and enable these

appropriate standard scenarios. This is an absolutely no-

code/low-code option in the SAP S/4HANA system. We’ll

explain where to find these standard scenarios and the

required configuration to enable them in Transaction SPRO

in Section 14.4.

14.2.2 Custom Flexible Scenarios

As mentioned, there are certain scenarios you can’t meet by

using standard templates. SAP has provided flexibility to

create custom scenario in such cases, such as a custom HR

form filled in by the requester and sent to the approver. The

approver will check the data and approves it if everything is

fine. Upon approval, data is posted back into SAP. Because

it’s purely a custom requirement, there is no standard

template available in the system that applies.

We have to create a custom scenario and workflow to cater

to this type of custom requirement. The developer has to

model the requirement and create the custom scenario in

the backend system. The business process

analyst/functional consultant then creates a workflow

template in SAP Fiori by using the Manage Workflows app.

Hopefully you understand now when to go for standard and

when you need to implement custom flexible scenarios.

We’ll compare both options in detail in the following

sections.

14.2.3 Comparing Flexible and Classical

Workflows

Let’s compare the main differences between classical and

flexible workflows to give you more insights into flexible

workflows. As listed in Table 14.4, you can see the key

differences between classical and flexible workflows, which

will make it easier to develop these functionalities.

Feature Classical

Workflow

Flexible

Workflow

Availability SAP ERP, SAP

S/4HANA

SAP S/4HANA

Configured by

Manage Workflows

app

No Yes

Work items Yes Yes

Integration with My

Inbox

Yes Yes

Type of process

supported

Sequential/parallel Sequential

Feature Classical

Workflow

Flexible

Workflow

Ad hoc workflows No Yes, in the

product lifecycle

management

(PLM) module

flexible

workflows

Events Yes Yes

Manage Teams and

Responsibilities

app integration for

agent

determination

No Yes, but not

available for

custom

workflows

Substitution

available

(active/passive)

Yes Yes

Workflow

configured by

Developers (IT

team)

Business process

specialist

Exception handling Handled with flow

modeling

Exception

handling in the

Manage

Workflows app

for negative

actions

Feature Classical

Workflow

Flexible

Workflow

Deadline

monitoring

Yes Yes (from SAP

S/4HANA 1909

version onward)

Maintain Email

Template app

integration

No Yes (from SAP

S/4HANA 1909

version onward)

Workflow Builder Transaction SWDD Transaction

SWDD_SCENARIO

Workflow logs Yes Yes

Complexity of

workflows

Low to complex

can be modeled

Typically,

complex flows

split into smaller

condition

sequential flows

in Manage

Workflows app

Table 14.4 Comparison between Classical and Flexible Workflows

14.2.4 Choosing Between Classical and

Flexible Workflows

You’ll come across many scenarios in real-world business

processes in which it’s very difficult to choose which

between a classical or flexible workflow to fulfill business

requirements. Figure 14.1 helps you make a decision and

choose the right framework to deliver on the requirements.

Figure 14.1 Choosing between Classical and Flexible Workflows

14.3 Migrating to Flexible

Workflows

All new key words are used when migrating to flexible

workflows from classical workflows. Table 14.5 lists the new

keywords.

Classical Workflows Flexible Workflows

Workflow template Workflow scenario

Agent responsibility rules Teams and

responsibilities

Web Dynpro/module pool SAPUI5/SAP Fiori

Universal worklist/Business

Workplace

My Inbox

Transaction SWDD Transaction

SWDD_SCENARIO

Table 14.5 New Key Words in Flexible Workflows

Let’s also look at our migration path, which is useful when

migrating to flexible workflows. Brownfield implementations

are more common these days, so the decision is whether to

develop a new flexible workflow or not during migration.

Figure 14.2 will be helpful to make the right decision when

migrating from an SAP ERP system to SAP S/4HANA (both on

premise and in the cloud).

Figure 14.2 Migration Path

14.4 Setting Up a Standard Flexible Workflow Scenario

We’ll explain how to find standard flexible scenarios using different methods and how to

configure and activate one standard template with step-by-step instructions. Let’s take a

purchase requisition flexible scenario as an example and see how to find this scenario in

the SAP Help site, how to locate it in the scenario editor, how to activate the scenario, and

how to configure end to end by using the Manage Workflows app.

14.4.1 Finding Standard Workflows on SAP Help

SAP Help has provided detailed step-by-step instructions to activate many standard

scenarios. You’ll find the appropriate scenarios under the relevant functional module help

links. For example, we can walk you through the purchase requisition flexible scenario in

SAP Help (the link for the same is http://s-prs.co/v569701).

For approval of purchase requisitions, you have two options:

Overall release

The entire purchase requisition is approved. This type of approval is also known as

header level approval.

Release of purchase requisition items

The items of the purchase requisition are approved individually. This type of approval is

also known as item-level approval.

14.4.2 Finding Workflows in Scenario Editor and the Manage

Workflows App

Developers can find the flexible workflow scenarios (by clicking on the Scenario field value

help in the left-side navigation panel) in the scenario editor using Transaction

SWDD_SCENARIO (see Figure 14.3 to see what this looks like in an on-premise SAP

S/4HANA system). You can check all artifacts in the scenario editor and runtime class

details. We’ll explain more about the scenario editor in Chapter 15.

You can click on the Scenario field value help in the left-side navigation panel in

Transaction SWDD_SCENARI to see all the scenarios available in the system in the value

help popup window. Choose the appropriate scenario, and explore all details. For example,

we’ve selected Approve Purchase Requisition Item Level Scenario. Generally,

functional consultants and business process specialists aren’t interested in the technical

details of the scenario; they just want to see the business version so they can tailor it per

business requirements.

To tailor it, you’ll use the Manage Workflows app. Scenario should be activated in the

backend to be available in the Manage Workflows app. We’ll explain those steps in

Section 14.4.4.

http://s-prs.co/v569701

Figure 14.3 Transaction SWDD_SCENARIO

For now, let’s just discuss how to find a workflow in the Manage Workflows app. Log in the

SAP Fiori launchpad and access the Manage Workflows app (see Figure 14.4), provided

you’ve got relevant roles assigned to your user ID. You can see all the activated scenarios

in the Workflows dropdown.

Figure 14.4 Manage Workflows App: Workflows List

14.4.3 Activating the Scenario

Figure 14.5 explains the sequential flow of activities to be performed to activate any

flexible workflow scenario in the system. A few are mandatory and a few are optional. Let’s

take the purchase requisition scenario as an example and go through all these steps one by

one.

Figure 14.5 Scenario Activation Steps

The scenario activation steps are described in the following:

1. Perform flexible workflow customization.

As a prerequisite, you must complete all regular workflow configuration steps in the

backend system that are mentioned in Chapter 2, Section 2.3. Ensure that the

automatic Customizing is active for the workflow functionality. Check whether all

Customizing steps in Transaction SWU3 (see Figure 14.6) listed here have a green

checkmark:

Configure RFC Destination

Edit System Administrator for Workflow

Edit Active Plan Version

Classify Decision Task as General

Document Generation/Form Integration

Edit Time Units

Schedule Background Jobs SAP Business Workflow

If not, click Redo Automatic Customizing, or select one of the activities, and

click Execute Activity to make the required settings.

Figure 14.6 Transaction SWU3

2. Activate flexible workflow scenarios.

Activate the relevant type of business document flexible workflow scenario. In our

example, it’s purchase requisition. In Transaction SPRO (Customizing) under

Application Server • Business Management • SAP Business Workflow •

Flexible Workflow • Scenario Activation, you’ll add the scenario ID you want to use

and activate it. This is one of the prerequisites to get scenarios in the Manage

Workflows app.

As shown in Figure 14.7, click on the New Entries button, enter the required scenario,

and check the Active checkbox in the Activating a scenario table. The screen shows

the ID added and activated for the purchase requisition line-item approval scenario.

Similarly, you need to maintain the scenario ID for the required workflow.

Figure 14.7 Activate the Flexible Scenario

3. Define step names and decision options in My Inbox.

Generally, all tasks will appear in the approver’s My Inbox app whether they are

relevant or not. This becomes a tedious job to filter required tasks by approvers, and

they might ask to send only relevant work items to their inbox. You’ll maintain these

settings in Transaction SPRO path SAP NetWeaver • Application Server • SAP

Gateway Service Enablement • Content • Workflow Settings • Enable Task

Filter.

To display work items in the My Inbox app, you must maintain the required relevant

workflow decision task ID details via Transaction SPRO menu path SAP NetWeaver •

SAP Gateway Service Enablement • Content • Workflow Settings • Maintain

Task Names and Decision Options, which is shown in Figure 14.8.

You’ll maintain all step details as mentioned in Table 14.6 by clicking on the New

Entries button shown in Figure 14.8.

Step Details

Workflow ID Maintain the required workflow ID.

Step ID Maintain the required dialog step ID in the workflow.

Icon MIME Repository Path Enter the icon MIME repository.

Step Description Enter the step description.

Table 14.6 My Inbox Step Details

You can see how it has been maintained in the purchase requisition scenario example

in Figure 14.8. You have to maintain in a similar way for other scenarios as well.

Figure 14.8 My Inbox Settings

You need to select Step ID and maintain decision keys for that step ID. As shown in

Figure 14.9, maintain the following values in the Decision Keys maintenance view:

Decision Text: This value is the dialog step outcome in the workflow task. This will

be displayed as button text in the My Inbox app.

Nature: This value is the workflow dialog task step action nature. Based on this

value, button colors will be changed in the My Inbox app.

Figure 14.9 My Inbox: Task Decision Keys

4. Define visualization metadata for My Inbox.

These are other important settings that you need to perform to integrate work items

properly in the My Inbox app. This is required to navigate to another page from the My

Inbox app per business requirements. Go to Transaction SWFVISU, and maintain these

settings for the required workflow tasks.

You can see how these details are maintained in the example scenario in Figure 14.10.

You’ve already gone through these details in Chapter 11, Section 11.2.3. That is why

we’ve outlined only our sample scenario purchasing requisition details in Figure 14.10.

You can refer to the same chapter if any further details required.

Figure 14.10 Transaction SWFVISU

Select a task, click on the Visualization Parameter node, and then maintain all the

parameters shown in Table 14.7.

Parameter Name Visualization Parameter Value

COMPONENT_NAME cross.fnd.fiori.inbox.annotationBasedTaskUI

QUERY_PARAM00 service=/sap/opu/odata/sap/C_PURREQUISITION‐

ITEM_FS_SRV

QUERY_PARAM01 entity=/C_PurRequisitionItemFs(PurchaseRequisi‐

tion='{&_WI_OBJECT_ID.MS_PUR_REQ_ITEM‐

.PURCHASEREQUISITION&}',PurchaseRequisition‐

Item='{&_WI_OBJECT_ID.MS_PUR_REQ_ITEM.PURCH‐

ASEREQUISITIONITEM&}')

Parameter Name Visualization Parameter Value

QUERY_PARAM02 annotations=/sap/opu/odata/IWFND/CATALOG‐

SERVICE;v=2/Annotations(TechnicalName='C_PURREQUISI‐

TIONITEM_FS_ANNO_MDL',Version='0001')/$value

SCHEME Sapui5

Table 14.7 My Inbox Visualization Parameters

5. Deactivate event type linkages for old workflows.

As a rule, activating flexible workflow scenarios is sufficient to override old workflow

scenarios. To be on the safe side, you can additionally deactivate any old workflow

scenarios you may have used previously. You can activate all relevant OData services in

Transaction /IWFND/MAINT_SERVICE for values helps, and so on per the SAP Fiori app

reference library configuration details.

These are all the minimum activities that must be completed in the backend SAP S/4HANA

system. Once these are completed, then you have to log in to SAP Fiori launchpad and

configure the workflow template by using the Manage Workflows app. We’ll explain those

details in the following section.

14.4.4 Setting Up a Standard Scenario Using the Manage Workflows

App

Business process specialists and functional consultants will configure the workflow

template by using the Manage Workflows app, which is available by logging in to the SAP

Fiori launchpad. We’ll explain this setup by using our example scenario: Release of

Purchase Requisition Item. Select this scenario in the Manage Workflows app (see

Figure 14.11).

Figure 14.11 Manage Workflows Homepage View

By default, you can locate one active scenario in the list. We’ve outlined the sample

business requirements in the following; you can configure the template quickly in the

Manage Workflows app for these business requirements:

The workflow should be triggered when the net amount is greater than 1,000 USD.

The work item should be routed to the initiator’s manager.

The purchase requisition item should belong to purchase group Z02.

The overdue item should be displayed in the approver’s inbox if he won’t approve after

24 hours.

The workflow should be canceled when the approver rejects the line item.

The first step in the workflow template configuration is to click on the Add button in the

Manage Workflows app homepage view to create the new template (see Figure 14.12).

Figure 14.12 Manage Workflows: New Template

Here you’ll fill out the following information:

Workflow Name

You must enter a meaningful name for your template.

Description

Enter a description of the workflow.

Valid From

If you’re activating the workflow approval flow for a certain period, then enter a Valid

From date.

Valid To

If you’re activating the workflow for a certain period such as a campaign, then enter a

Valid To end date. The workflow won’t be triggered after the end date.

Per our business requirement, the workflow should be triggered when the net amount of a

purchase request is greater than 1,000 USD. It’s called a condition-based workflow

triggering, and you have the same option available in flexible workflows.

We’ve added this condition as shown in Figure 14.13. You can add more than one start

condition by using the Create Alternative Preconditions button as well, if required.

Figure 14.13 Manage Workflows: Start Conditions

Once the condition setup is completed, you have to create the required steps in the

workflow. As shown in Figure 14.14, click on the Create button to add a new step. You can

add either dialog activity or background activity here.

You can add dialog activity if any human intervention is needed (i.e., manager or any other

persona per requirement will get the work item per the dialog step agent determination

and will check the work item and take appropriate action). For background activity, the

step will execute predefined business logic and complete the process.

Per our sample business requirement, you need to send the work item to the approver’s

inbox when the amount is greater than 1,000 USD. To achieve this requirement, you’ll add

one purchase requisition release step that will be routed to the initiator’s manager. To do

so, click on the Create button in the Workflow Steps section on the Start Conditions

tab, which is shown in Figure 14.14. This will open the next screen where you’ll provide all

the step-related details and save the configuration.

Figure 14.14 Manage Workflows: Add Steps

Specifically, as shown in Figure 14.15, maintain all step details such as agents, step

conditions, deadline, exception details, and so on.

Figure 14.15 Manage Workflows: Step Details

On these tabs, you’ll maintain the following:

Step Name

This is a meaningful step name per the business requirement.

Step Type

You can choose a relevant step type per the business requirement and scenario

definition.

Assignment By

You’ll configure how agents will be determined by using this dropdown value. In general,

you can choose either Role or User. If Role, then you can find agents based on different

options, If User, then a user ID has to entered.

Role

You’ll get agent determination options based on the scenario definition in backend. You’ll

choose the appropriate option to select the agent for your work item. In our purchase

request approval example, we’ve selected Manager of Workflow Initiator.

The next tab you’ll configure is Step Conditions. You’ll configure conditions for steps as

well, which means whenever a step condition occurs, then only that step work item will be

triggered. Based on your business requirements, you must configure appropriate step

conditions.

Per our business requirement, the work item will be triggered only when the purchasing

group of the purchase requisition is Z02, as configured in Figure 14.16.

You can add more than one condition by using the Add Alternative Preconditions button

on the Step Conditions tab.

Figure 14.16 Manage Workflows: Step Conditions

The next tab is Deadlines in which you’ll configure overdue work items and deadline email

notifications. You can mark any work item overdue based on your business requirement.

Per our purchase requisition example business requirement, you must mark a work item as

overdue if the approver won’t take any action after 24 hours. To do this, select Deadline

calculation start with creation of workflow Instance, and then select 1 Day(s), as

shown in Figure 14.17.

Figure 14.17 Manage Workflows: Deadlines

The next tab is Exception Handling (see Figure 14.18) where you’ll maintain all workflow

routing exception cases. All of these actions are based on 1 Day(s) backend scenario

design. All negative outcomes appear in this section, and we’ll configure those outcomes.

Per our purchase requisition example requirement, the workflow should be canceled when

the approver rejects the line item. You have to configure the Exception Handling section

to meet this requirement. In the Required Action dropdown, all negative outcomes in the

step definition in the backend will be available in this dropdown. Based on the requirement,

choose the required action. The Action Result can be as follows:

Cancel Workflow

This will cancel the workflow.

Continue

The workflow will be continued further.

Repeat Step

The same step will be repeated again.

Restart Workflow

The workflow will be restarted from the beginning.

This configuration was done for our example scenario to cancel the workflow. Finally, click

on the Apply button on the footer toolbar and create the step. Click on the Save button.

Figure 14.18 Manage Workflows: Exception Handling

Once the workflow is saved, you’ll see the Activate button on the top toolbar (see

Figure 14.19), which will activate the workflow.

Figure 14.19 Manage Workflows: Activate the Workflow Template

We’ve explained all the steps to configure and activate the flexible workflow template by

using the Manage Workflows app.

Apart from these options, you can configure deadline email notification and final approval

or rejection email notifications as well in the Manage Workflows app. However, you must

create these templates during the scenario definition in the backend system, and then

you’ll only get those features in the Manage Workflows app. We’ll explain those details in

the following section.

14.5 Extending the Standard

Flexible Scenario

SAP has provided multiple ways to enhance standard

flexible scenarios per business requirements, and a few of

those techniques are discussed in this section. SAP provided

various business add-ins (BAdIs) to enhance agent

determination rules, business context properties, and so on.

You have to find relevant BAdIs in the BAdI repository and go

through the BAdI documentation to implement the same.

Let’s look at one such BAdI to enhance preconditions in

flexible workflows. SAP provides a set of preconditions and

step conditions that we can use in the Manage Workflows

app when creating the template. None of the existing

conditions are meeting the business requirement, so SAP

provided the way to create our own custom conditions by

using BAdIs.

SAP provides two BAdIs to define the custom condition and

evaluate the new custom condition and details mentioned:

SWF_WORKFLOW_CONDITION_DEF

This BAdI is used to define the new custom preconditions.

This is a filter BAdI, so you have to provide the scenario ID

when implementing this BAdI.

SWF_WORKFLOW_CONDITION_EVAL

This BAdI is used to evaluate the new precondition

entered by the user. This is also a filter BAdI so you

provide the scenario ID when implementing this BAdI.

Note

You can check the BAdI documentation to implement

these BAdIs and also check sample class

CL_SWF_FLEX_IFS_BADI_COND_SAMP to understand the coding

pattern for custom condition definition and evaluation.

14.6 Summary

This chapter explained the basic details about flexible

workflows. You saw the differences between classical and

flexible workflows and how to find and activate standard

scenarios using the Manage Workflows app. We also covered

the minimum configuration required in the backend SAP

S/4HANA system to activate any scenario and how to

perform My Inbox integration. We’ll provide more details

about custom scenario development by exploring some

examples in the next chapter.

15 Custom Scenario

Development

This chapter explains how to develop a custom

flexible workflow. You’ll learn about different areas of

scenario development, such as flexible blocks, tasks,

conditions, agent determinations, email templates,

and so on. You’ll also understand how to configure

the business objects for flexible workflow. We’ll walk

through an end-to-end sample use case that will

include configuring a custom scenario inside the

Manage Workflows app as well.

As you recall from Chapter 14, flexible workflows are an

innovative and new concept in SAP S/4HANA as a follow-up

to SAP Business Workflow. They give more control and

flexibility to business process experts to create workflows

from predelivered content. You’ve seen the key differences

between classical workflows and flexible workflows. You also

learned how to set up out-of-the-box workflow scenarios,

activate the predelivered flexible workflows, and extend the

standard flexible workflows.

In this chapter, you’ll learn more about creating custom

workflow scenarios and flexible workflows on top of that.

Beyond the set of workflow scenarios delivered by standard

SAP and options to extend those standard scenarios, SAP

enables you to create custom flexible workflow scenarios for

highly customized requirements in your business processes.

You’ll see different ABAP objects and steps needed to build

an entirely custom flexible workflow to meet such individual

customer needs. We’ll dive deeper into the elements of

flexible blocks, which are the basic building blocks of

standard as well as custom workflow scenarios.

In addition, we’ll take a sample use case to walk through the

different objects while we go through the custom scenario

development. Let’s assume a very generic process in the

hire-to-retire area: an HR application where an employee

raises an HR request that subsequently goes for two levels

of approval before updating into the actual database.

15.1 Workflow Class Development

As you’ve read about the ABAP class-based approach of

building the core programming logic behind the classical

workflow in Chapter 3, a similar approach is carried into the

flexible workflows in SAP S/4HANA as well. ABAP classes

form the basic building blocks that represent the business

entity and hold the core technical and business

functionalities of the workflow. In this section, you’ll see the

significance of classes with respect to flexible workflow

scenarios, attributes, methods, and standard callback

classes for flexible workflows.

15.1.1 Use Case for Walkthrough of Custom

Scenario

We’ll be setting up the flexible workflow for the sample use

case of the HR request we introduced at the beginning of

this chapter. Let’s assume a very basic use case having two

levels of approval. The breakdown of the process flow into

the subsequent steps is illustrated in Figure 15.1 and listed

here:

1. Employees submit an HR request, and the flexible

workflow is triggered.

2. The workflow will be acted upon (approved/rejected) by

the immediate line manager.

3. Once the line manger approves, the workflow will pass

to the next approver, for example, the HR administrator.

4. After each step, relevant email notifications should be

sent to approvers for pending action and to the

employee regarding final completion of the workflow

request.

Figure 15.1 Flow Diagram for the Sample Use Case

In each relevant section of this unit, we’ll take this sample

use case and show the relevant artifacts being created.

15.1.2 Classes

Each workflow scenario has a leading object associated with

it. A leading object represents the business entity in the SAP

system and encapsulates the attributes, that is, the

business data and its corresponding functions and the

methods in an object-oriented fashion. Examples include an

employee travel request, a purchase order, sales order, and

so on. The leading object of the workflow scenario can be a

business repository object or an ABAP class implementing

interface IF_WORKFLOW. We prefer the more recent and

efficient approach—the class-based one for custom

development. This class will provide the methods for

individual tasks, start of event, and other events of the

flexible workflow scenario.

In addition, callback classes CL_SWF_FLEX_IFS_DEF_APPL_BASE and

CL_SWF_FLEX_IFS_RUN_APPL_BASE are responsible for handling the

framework-level events in flexible workflow. You’ll learn

more about the significance of these classes in subsequent

sections.

For our use case, we’ll be creating custom class

ZCL_EMPLOYEE_REQUEST_WF. Open Transaction SE24 (Class

Builder), and click Create to create a new class. Provide the

details as shown in Figure 15.2. Enter a meaningful

description in the Description field, select 2 Public for the

Inst.Generation (instance generation) dropdown, and keep

the Class Type set as Usual ABAP Class. Click Save.

In addition, create custom callback class for runtime data:

ZCL_EMP_FLEX_RUN_APPL_BASE in a similar fashion. You’ll add

interfaces to these classes in the next section.

Figure 15.2 Custom Class for the Sample Use Case

15.1.3 Interfaces

Similar to classical workflows, every ABAP class being

attached to a workflow scenario as a leading object should

implement interface IF_WORKFLOW. This interface is the basic

building block of ABAP class-based workflow

implementation. Once you use this interface in the

Interface tab in ABAP Class Builder (Transaction SE24) for

the custom class, it adds BI_OBJECT and BI_PERSISTENT as well.

Open the custom class ZCL_EMPLOYEE_REQUEST_WF via Class

Builder using Transaction SE24 in change mode, navigate to

the Interface tab, and enter “IF_WORKFLOW” as the

Interface. Save and activate the class. Figure 15.3 shows

the interfaces implemented in our use case’s custom class

Similarly, the runtime and definition callback classes of the

flexible block in a workflow scenario should implement

interfaces IF_SWF_FLEX_IFS_RUN_APPL and

IF_SWF_FLEX_IFS_DEF_APPL, respectively.

Figure 15.3 Interface for the Sample Use Case

15.1.4 Attributes

Attributes define the properties of the leading object, that is,

the business entity being processed. For example, an

employee object may have attributes such as employee

number, employee name, department code, and so on. Like

classical workflows, there is a local persistence object

reference. For this, you’ll need an attribute of type SIBFLPOR.

This local persistence object reference will be used to

convert the generic class reference created by the workflow

framework to a specific instance of the ABAP leading object

class.

In our use case, mv_pernr will be the key attribute of the

leading object class, which will uniquely identify the

business object, that is, the employee in the organization,

by using his personnel number. Add a new line in the

attribute section of Class ZCL_EMPLOYEE_REQUEST_WF,

enter the Attribute name as “mv_pernr”, select Level as

Instance Attribute, set Visibility as Private, select the

Key checkbox, enter the Associated Type as “PERNR_D”,

and add a meaningful Description. Similarly, create

another instance attribute called “Mv_por” of Associated

Type “SIBFLPOR” with Private selected under Visibility in

the Attribute section of custom class

ZCL_EMPLOYEE_REQUEST_WF. This will be the persistent

object reference as shown in Figure 15.4.

Figure 15.4 Attributes of the Workflow Class for the Sample Use Case

15.1.5 Events

Events are a more flexible and effective way to

communicate with workflows. Events are messages that can

be raised by a calling application program and published

throughout the system. All the receiving workflows linked to

that event react according to the type of event. The event

concept of classical workflows is carried as is into flexible

workflows. These events have parameters that are used to

communicate data between application programs and

workflow instances.

The following types of events are available:

Triggering event of a task or a flexible workflow

Terminating event of a task

Cancellation event of a flexible workflow

Event to restart the workflow

These events are also used as a part of exception handling;

that is, you can define how the system should behave when

any dialog work item is rejected by the approver. For our

custom use case, create an event START in the custom class

by following these steps (see Figure 15.5):

1. Open custom class ZCL_EMPLOYEE_REQUEST_WF in

change mode via Transaction SE24.

Figure 15.5 Event in the Custom Class for the Sample Use Case

2. Move to the Events tab, and add an Instance Event

named START with Public visibility and a meaningful

Description.

3. Add the event parameters by clicking the Parameters

button. These parameters will be used to pass the

required input from the calling application into the

workflow.

15.1.6 Standard Methods

As with classical workflows, while creating the class for the

leading object of a workflow scenario, each of the methods

inherited from interface IF_WORKFLOW should be implemented

or activated with empty source code at least.

The following methods are inherited from interface

IF_WORKFLOW (i.e., appears in the Methods tab once the

interface is added) of which FIND_BY_LPOR and LPOR are used to

convert the workflow generic reference to the specific

instance of our ABAP class and vice versa. The purpose of all

these methods is the same as in the classical workflows:

BI_PERSISTENT~FIND_BY_LPOR

BI_PERSISTENT~LPOR

BI_PERSISTENT~REFRESH

BI_OBJECT~DEFAULT_ATTRIBUTE_VALUE

BI_OBJECT~DEFAULT_ATTRIBUTE_VALUE

BI_OBJECT~RELEASE

Figure 15.6 shows the standard methods inherited from the

interface that are to be implemented in our custom class of

the HR request use case. In this use case, the employee

number will be passed to the instance ID by a call to the

FIND_BY_LPOR method by the workflow event handler. This

employee number will be stored in the attribute of classes

mv_pernr and ms_por via the constructor method during

instantiation of the workflow object and will be used

throughout the workflow processes.

Figure 15.6 Methods of the Workflow Class of the Use Case

When it comes to callback classes, SAP has provided

different methods, as listed in Table 15.1, which are plugged

in at different framework level executions, such as before

creation of an activity, after creation of an activity, and so

on. For our use case, we have the callback class for runtime

data: ZCL_EMP_FLEX_RUN_APPL_BASE.

Methods in Runtime

Callback Class

Description

BEFORE_CREATION_CALLBACK Called before the next

activity (work item) is

created

ON_CREATION_CALLBACK Called on creation of activity

AFTER_CREATION_CALLBACK Called after the current

activity is created

BEFORE_COMPLETION_CALLBACK Called before activity

completion

AFTER_COMPLETION_CALLBACK Called immediately after

activity completion

MITIGATE_AGENT_RULE_EVALUATION Called when agent

determination fails

MITIGATE_START_COND_EVALUATION Called when the start

condition evaluation fails

RESULT_CALLBACK Called when the entire

workflow is completed

ON_CANCELLATION_CALLBACK Called when the entire

workflow is canceled

INIT Called on initialization of the

object

Table 15.1 Methods in the Standard Callback Class

Each of these methods has different importing and

exporting parameters with which you can read the context

elements (workflow containers and task containers),

outcomes of user decisions, and other workflow technical

details at runtime. You can use these methods for

performing tasks such as updating custom tables of your

application, updating staging or intermediate tables for

statuses, calling business application programming

interfaces (BAPIs) and function modules (especially on

completion of the workflow) to update specific objects,

sending highly customized emails with complex business

logic, and so on. You can implement the logic to cater to

technical aspects such as creating application logs, creating

change documents, and so on.

Let’s implement the RESULT_CALLBACK method of

ZCL_EMP_FLEX_RUN_APPL_BASE for demonstration. In this method,

the importing parameter IO_CONTEXT contains the reference to

the scenario context. The container elements can be read

using methods get_workflow_container() and

get_task_container() for the workflow and task containers,

respectively.

Using method get_result() of the importing object reference

IO_RESULT, you can fetch the result of the current task of the

workflow instance, such as approved or rejected based on

the nature of the work item execution (positive/negative),

the agent/actor of the user decision task, any notes added

during approval, and so on.

Using these values at runtime, you can implement the

required business logic. The sample implementation is

shown in Listing 15.1.

 METHOD if_swf_flex_ifs_run_appl~result_callback.

*/ Get Result

 io_result->get_result(

 RECEIVING

 ry_result = DATA(ls_result)).

*/ Get Container - The Values of Application Object at runtime

 io_context->get_workflow_container(

 RECEIVING

 ro_container = DATA(lt_wf_container)).

 io_context->get_task_container(

 RECEIVING

 ro_container = DATA(lt_task_container)).

*/ Update Custom Tables if any

* ...

*/ Call BAPI or other logic

* ...

*/ Application Logs if needed

* ...

*/ Set Workflow Outcome - will be used by other processing like Email Templates

 ev_outcome = COND #(WHEN ls_result-nature = 'POSITIVE' THEN 'APPR' ELSE 'REJ'

).

 ENDMETHOD.

Listing 15.1 Sample Implementation of the RESULT_CALLBACK Method of the

Callback Class

15.2 Business Objects

In today’s realm of object-oriented programming, classes

and objects play a major role in tying together related

entities, properties, and functions. Business objects

represent a real-time business entity like a company,

material, purchase order and so on. These entities are

modeled using ABAP core data services (CDS) views. These

CDS views are tied to the flexible workflow scenario and its

associated classes using a set of configurations. For

example, in the workflow scenario for the overall release of

the purchase requisition, leading object PURCHASEREQUISITION is

assigned to class CL_MM_PUR_WF_OBJECT_PR and corresponding

CDS view I_PURCHASEREQUISITIONAPI01 (see Figure 15.7). In the

following sections, you’ll learn how to maintain business

object types and object node types, as well as how to link

them with CDS views that will be consumed by flexible

workflows.

Figure 15.7 Leading Object and Related CDS View for Purchase Requisition

In our use case, we have a sample custom CDS view,

ZI_EMPLOYEE_REQ, on top of underlying tables, for example, a

custom table that represents the entity model for the

application object and is associated to the leading object

employee. This CDS view contains fields such as Personnel

Number, Employee Name, Request Number, Created

On, and so on.

15.2.1 Maintain Business Object Type

(V_BO_TYPE)

The SAP object type is a generalization of business object

types, which has been proposed as the central entity in the

SAP S/4HANA meta model. This content will be available

within the SAP S/4HANA runtimes for consumption by

various frameworks such as business event handling,

extensibility, SAP Fiori reuse services, and so on. The SAP

object type is a unique representation of the business entity.

Go to view maintenance using Transaction SM30, enter the

Table/View name as “V_BO_TYPE”, and click the Edit

button to open this view in change mode. Click the New

Entries button to create a new entry for our use case, as

shown in Figure 15.8. SAP Object Type is a character string

without spaces. Object Type Name can be any meaningful

string.

Figure 15.8 Maintain the Business Object Type

15.2.2 Maintain Object Node Type

(SBO_V_NODETYPE)

In this Customizing activity, you maintain the object node

type for the object type. Each object type is associated with

a set of object node types. The object type groups various

nodes. There is a dedicated root node for each object type.

Go to Transaction SM30, and maintain entries in view

SBO_V_NODETYPE, as shown in Figure 15.9. Open this view in

Edit mode, and click the New Entries button. SAP Object

Node Type is a character string without spaces, and SAP

Object Node Type Description is a meaningful

description for it. Set the Root Indi field, which indicates

the current object is the root entity. Provide the SAP Object

Type as “ZZEmployeeRequest” created in the previous step.

In addition, maintain the workflow class representation (or

business object repository [BOR] representation as needed).

In our case, map custom class ZCL_EMPLOYEE_REQUEST_WF.

Figure 15.9 Maintain Business Object Node Type.

15.2.3 Maintain Core Data Services View

(V_SBO_NODE_CDS)

The leading business object, which represents a business

entity in real life, has an associated CDS root entity. This

forms the base for the entire entity model, which relates to

different entities.

In this Customizing activity, you’ll maintain such CDS views

for the corresponding SAP object node types. Open the view

maintenance for V_SBO_NODE_CDS via Transaction SM30, and

add the new entries as shown in Figure 15.10 for our use

case. Here, SAP Object Node Type is

“ZZEmployeeRequestNT” (same as the one created in

Section 15.2.2), CDS Type is Representative View, and

CDS View Name is “ZI_EMPLOYEE_REQ”.

Figure 15.10 Maintain CDS Views

15.2.4 Maintain Object Representation

In this Customizing activity, you maintain the different

object representation for the object types. The object

representation can be a BOR object ID, class, behavior

definition, SOA number, or key fields of an object. Maintain

the object representation as custom workflow class

ZCL_EMPLOYEE_REQ_WF, as shown in Figure 15.11 by the view

maintenance via Transaction SM30 for view V_BODEF. For this,

create a new entry where the SAP Object Type is

“ZZEmployeeRequest” (same as the one created in

Section 15.2.1), Rep Type (representation type) is Class,

and SAP Object Representation is

“ZCL_EMPLOYEE_REQUEST_WF”.

Figure 15.11 Maintain Object Representation

Note

All of these configurations are available in the SAP

Customizing Implementation Guide (Transaction SPRO) at

menu path ABAP Platform • Application Server •

Business Management • SAP Object Type

Repository.

Once all of these configurations are completed, the class (or

business object) for the leading object, the object

representation, and the corresponding CDS views are linked

to each other and will be available for further consumption.

15.3 Scenario Development

The workflow scenario is the soul of flexible workflows. They

provide the skeleton for a flexible workflow. In other words,

flexible workflow uses the building blocks provided by its

corresponding workflow scenario. Each workflow scenario

consists of a flexible block that contains necessary

components required by flexible workflow: context element,

process data, control data, agent rules, activities,

conditions, and so on.

Context elements are a kind of variable used by flexible

workflow. Process data and control data hold the different

classes that form the foundation of flexible workflow

execution. Activities contribute different tasks (background

and dialog) to be executed, and agent rules provide

different methods of agent determination available for that

flexible workflow for the actionable dialog tasks. As the

name suggests, conditions provide the preconditions that

can be used by flexible workflow for validation before

executing any specific task or the workflow itself.

We’ll go through each of these components and other

related artifacts in detail in this section.

15.3.1 Context Element

Context element or scenario context is the terminology for

workflow container in flexible workflows. In simple terms,

these are placeholders or containers for a set of variables

and structures that can hold the business data (values) at

runtime, that is, during workflow execution. The elements of

a scenario context are described by the ID, data type

reference, and other properties (e.g., import, export, and

mandatory). The scope of these scenario context elements

is for the entire life span of that workflow instance. Every

scenario context has some default system elements and

control parameters, as well as the elements that store the

actual business data. Figure 15.12 shows the Scenario

Context area in the left side pane of the workflow scenario

builder from Transaction SWDD_SCENARIO.

The importing context elements hold the value that is

passed when a workflow instance is started. They must

either be defaulted with the initial value or passed from the

calling application through the triggering event. The

exporting elements are used by calling workflows for nested

workflow calls. These features remain the same as the

workflow container elements in classical workflows.

In our use case for demonstration, we’ve created context

element Employee, which is an object of custom class

ZCL_EMPLOYEE_REQUEST_WF. Open Transaction SWDD_SCENARIO.

Double-click on the text <Double-Click to Create> under

Scenario Context, and create context elements with

Element name “Employee”, enter a Name for it, and

provide a meaningful description in the Short Descript.

field, as shown in Figure 15.12. The Object Type of this

element will be CL ABAP Class, and

ZCL_EMPLOYEE_REQUEST_WF will be the corresponding

class assigned to it. As you can see, these steps are similar

to the workflow containers in classical workflows.

Figure 15.12 Scenario Context in the Workflow Builder

15.3.2 Process Data

The Process Data tab of the flexible block is the main

configuration area for a workflow scenario. Figure 15.13

shows a sample view of process data for a new workflow

scenario creation in Transaction SWDD_SCENARIO. The

important fields here are as follows:

Abbreviation

The 12-character abbreviation helps users to quickly

recognize the workflow scenario.

Description

This holds a meaningful description that best describes

the purpose of the workflow scenario.

Leading Object

Leading object represents a business object/entity in the

SAP system. It’s a mandatory parameter of the entire

process, created inside the scenario context, that is, the

workflow container. The leading object of the workflow

scenario can be a business repository object (Transaction

SWO1) or an ABAP class (Transaction SE24). The object

instance of this leading object essentially contains the

actual business data of the application (e.g., employee or

sale order) at runtime. It contains all the events and

methods to be used by other workflow elements as well in

each of the steps.

Workflow Start Events

This section contains the details of the events that will

trigger the creation of the flexible workflow instance.

Here, you provide the ABAP class/BOR details and its

corresponding event. Like classical workflows, the event

linkage will be activated from this section, and the event

container needs to be bound with the workflow container;

the external program will use this container to pass the

values into the workflow instance while starting the

workflow via the Start event.

Workflow Runtime Events

This section is used to configure the other events of the

workflow: cancel workflow and restart workflow. The class

event associated will be triggered accordingly.

Let’s create a new workflow scenario. Open Transaction

SWDD_SCENARIO, and create a flexible workflow scenario.

The screen shown in Figure 15.13 opens for further steps to

create the custom workflow scenario.

Figure 15.13 Creation of a New Workflow Scenario for the Sample Use Case

In the next screen, you’ll enter the basic scenario details

such as “Employee Req” for Abbreviation, a meaningful

Description of the flexible workflow, and Leading Object

details inside the Process Data tab of the flexible block, as

shown in Figure 15.14. Use the context element Employee as

we had created earlier of type ZCL_EMPLOYEE_REQ_WF, in this

Leading Object field of the Process Data tab.

Now assign the workflow start events and bind the event

parameters by clicking on the Bind button in the second

column of the Workflow Start Events table, similar to the

event bindings of classical workflows (see Figure 15.15).

Therefore, whenever the START event of class

ZCL_EMPLOYEE_REQ_WF is raised, this custom flexible workflow

will be triggered. This event can be raised from any user

exits, business add-in (BAdI), enhancement points, or any

other custom program/class methods per the business

requirements.

Figure 15.14 Process Data in a Flexible Block of the Sample Workflow

Scenario

Figure 15.15 Start Event for the Custom Use Case

Additional Information

In some cases, while extending the standard processes,

you may need to replace standard workflow with a

customized one. Deactivate the standard event linkage

and then activate the one with the custom workflow in

such cases. Transaction SWETYPV is used to

activate/deactivate event linkages.

15.3.3 Control

The Control tab (see Figure 15.16) of the flexible block

contains the details of the callback class.

CL_SWF_FLEX_IFS_DEF_APPL_BASE and CL_SWF_FLEX_IFS_RUN_APPL_BASE

are default standard classes provided by SAP for definition

and runtime data, respectively. Once you create the custom

workflow scenario, SAP defaults on the Control tab with

these standard classes. You can create a custom callback

class inheriting CL_SWF_FLEX_IFS_RUN_APPL_BASE per customer

need, and the developer must handle the runtime behavior

accordingly. The custom callback class for runtime data

should implement interfaces IF_SWF_FLEX_IFS_RUN_APPL and

IF_SWF_FLEX_IFS_RUN_APPL_STEP. Any custom class for

Definition Data should implement interface

IF_SWF_FLEX_IFS_DEF_APPL. More commonly, runtime data

callback classes are extended as needed, and the standard

settings are kept intact for definition data.

Figure 15.16 Control Tab of the Flexible Block

Now proceed to the control data of the workflow scenario

created in the previous section. Assign the callback class for

Runtime Data. You’ll be using the standard class for

definition data in our sample use case. Assign custom

runtime callback class ZCL_EMP_FLEX_RUN_APPL_BASE.

Warning

To prevent inconsistencies in existing instances, avoid

changing the callback class name after the activation of

the workflow scenario.

15.3.4 Activities

Activities are the collection of predefined steps consisting of

user decisions and workflow tasks. These are defined in the

flexible block of the scenario definition and are available to

model the step sequence of a flexible workflow using the

Manage Workflows app.

As shown in Figure 15.17, each activity should have a

Unique Name, meaningful Description, Activity Type

(user decision, task-based activity, etc.), system-generated

Activity number, and corresponding Task ID. Table 15.2

lists various kinds of activities available in the flexible

workflow scenario.

Figure 15.17 Activities in the Flexible Block of the Workflow Scenario

Types of Supported

Activities

Description

Activity Dialog or background task

Types of Supported

Activities

Description

User decision Dialog step with decision

options

Review Special dialog task for review

workflows

Extension Starts a workflow service

instance

Table 15.2 Types of Activities Available in a Workflow Scenario

Whenever there is a need for user action, for instance, leave

approval, you’ll use user decisions/activities with a dialog

task. When there is no user intervention in the step

execution, use a background activity, which executes the

method attached to the task in background mode.

Let’s configure the Activities tab for a custom use case.

Click the Create button (refer to Figure 15.17), and in the

popup screen that appears, provide a Unique name of the

activity, enter a Description, and choose the type of

activity under the What do you want to create? section.

In our use case, we’re creating an activity for a user

decision, which corresponds to the approval steps.

Figure 15.18 shows the activity creation for our use case.

Click OK (the checkmark button) to proceed to configure

further inputs of the user decision. As shown in Figure 15.19,

provide the Title (this will be the default work item text),

and then enter the parameters, if any, and the possible

decisions for the user decision work item: Approve and

Reject. Tag the decisions with the relevant texts and a

unique Outcome ID (“APPR”, “REJ”). Set the approval

decision as POSITIVE and the rejection as NEGATIVE in the

Nature column.

Figure 15.18 Create Activity Screen

Figure 15.19 User Decision Activity for Line Manager (Level-1)

Similarly create another activity “HRApprove” of the User

decision activity type, for the second level of approval, as

illustrated in Figure 15.20. The next approver will be an HR

administrator who is determined based on the SAP role.

Figure 15.20 User Decision Activity for HR Administrator

Now you have two activities that can be used in the flexible

workflow, as shown in Figure 15.21.

Figure 15.21 Activities Overview Screen in the Flexible Block

15.3.5 Conditions

Conditions define the criteria for execution of the workflow

steps. They are checked before execution of a workflow step

or entire workflow to validate certain business conditions,

and the steps are executed or skipped according to the

current data being processed. For example, you can have

different workflows configured based on the document type,

company code, net amount and so on for a purchase

requisition approval flexible workflow.

Conditions can have from zero to a maximum of two

parameters. In the Manage Workflows app, conditions are

available from the set of conditions defined in the workflow

scenario. The parameter will be passed based on the

selected condition. Figure 15.22 gives a quick view of

conditions available in the standard approve purchase

requisition item workflow scenario as an example.

Figure 15.22 Conditions in the Approve Purchase Requisition Item Level

Standard Workflow Scenario

SAP provides a set of predefined conditions for most of the

standard flexible workflow scenarios. They can be used

directly while creating a flexible workflow in the Manage

Workflows app.

For implementing custom conditions for individual business

requirements, SAP has provided enhancement spot

SWF_PROCESS_WORKFLOW_CONDITION. This spot contains two BAdI

definitions, as follows:

SWF_WORKFLOW_CONDITION_DEF to add custom conditions

SWF_WORKFLOW_CONDITION_EVAL to add evaluation logic for

custom conditions

You can implement these BAdIs to extend the standard

workflow scenarios as needed.

In the case of entirely custom solutions, new conditions will

be added into the custom workflow scenario. To create a

condition that will decide the very start of the workflow

itself, select the Start Condition checkbox. You can add up

to two parameters and make them mandatory if needed.

The following types of parameters are supported in workflow

scenario:

Integer

Decimal

Long

String

Date

Time

Boolean

Each parameter will be mapped to a scenario context, and

you can define the condition from the parameters in the

condition editor using various Boolean operators. Remember

that the start condition can use only importing or changing

parameters of the scenario context.

15.3.6 Agent Rules

Agent rules are responsible for the agent determination of

flexible workflows. These agent rules are used in the

Manage Workflows app to assign a recipient to an actionable

step or a notification. The basic concept of agent

determination remains the same as for classical workflows.

The key difference here is that the recipient of a work item

can be configured from the set of agent rules available in

the workflow scenario while configuring flexible workflows

from the Manage Workflows app, thus enabling more on-the-

fly control to key users and business process experts over

choosing the approvers.

Every flexible workflow scenario comes with a specific set of

standard agent rules, as shown in Figure 15.23. Even when

you create a custom workflow scenario, these standard

agent rules are automatically added to it. You can keep or

remove them as needed.

Figure 15.23 Standard Agent Rules in the Flexible Block Defaulted while

Creating a Custom Scenario

The standard agent rules are as follows:

workflowInitiator: Initiator of Workflow

This is an expression with system variable &_WF_INITIATOR&.

superiorOfWorkflowInitiator: Manager of Workflow

Initiator

This is basically an agent rule configured in Transaction

PFAC. This standard rule will return the reporting manager

of the workflow initiator from his HR organizational

management structure.

workflowSystemAdministrator: Workflow System

Administrator

This contains the workflow administrator details

configured in automatic workflow Customizing

(Transaction SWU3) or maintained in administration data

(Transaction SWDC_RUNTIME).

Additionally, standard workflows have an agent rule for

BAdI-based agent determination. This type of agent rule can

be used to enhance/extend the agent determination in a

standard flexible workflow with custom approval logic. Each

standard workflow scenario can also have other standard

agent rules specific to the business process they belong to,

for example, accounting object responsible, manager of

workflow initiator’s manager, and so on.

Apart from these predelivered standard agent rules, you can

create your own custom agent rules tailored to specific

business needs. The Rule Category can be any of the

standard agent assignment methods: roles, rules, simple

expressions, any SAP user ID, or HR organization

parameters similar to the classical workflows.

Note

Whenever the agent rule maintained in flexible workflow

fails to return any valid agents while resolving the agent

determinations during workflow execution, the workflow

instance goes into error. Such erroneous workflows need

to be monitored by the administrator.

The flexible workflow frameworks provide an option to

handle such agent-resolution errors programmatically by

using MITIGATE_AGENT_RULE_EVALUATION of the runtime callback

class of the workflow scenario.

In classical workflows, whenever any work item fails due

to agent determination, we relied on the notifications sent

by the workflow framework to the administrator in the SAP

inbox.

In flexible workflows, we’re given a provision to

programmatically handle such scenarios. Whenever the

agent rule is unable to return an agent for any agent

resolution of the task at runtime and the custom

mitigation programmed in MITIGATE_AGENT_RULE_EVALUATION is

also failing to return a valid agent, callback method

ON_NO_AGENT_FOUND is called. The application can be

programmed by the customer to handle such situations

per need, such as creating application logs, sending

notifications to the administrator, and so on.

With respect to our use case, we’ll use the standard

superiorOfWorkflowInitiator agent rule for the first level of

approval. For the second level, create a new agent rule by

clicking on the Create icon. Enter a name and description

for the agent in the Unique name and Description fields

in the popup, as shown in Figure 15.24. In the next screen,

select the agent type as AG Role when prompted, and

provide the custom role name as shown in Figure 15.25.

Figure 15.24 Create New Agent Screen

Figure 15.25 Role-Based Agent Rule Configuration

Note

A test role, for example, ZHR_ADMIN_FLEXI_WF_HR_REQUEST,

needs to be created from Transaction PFCG and assigned

to any test user.

Now with all the agents set up, the Agents tab looks

something like that shown in Figure 15.26.

Figure 15.26 Agent Rules

Note

In our use case, we’re using two different activities for

user decision. But you can create a single user decision

activity that can be reused as well by assigning different

agents for two different steps while configuring the

flexible workflow in the Manage Workflows app.

15.3.7 Value Helps

SAP has provided standard value helps for parameters in

standard flexible workflows, which are used to give

suggested values to the business process expert while

configuring the parameters for any given condition. These

value helps are mapped to an OData service in the backend

and fetches data through an EntitySet of that OData service.

For example, the value helps shown in Figure 15.27

correspond to the conditions that were shown earlier in

Figure 15.22.

For custom workflow scenarios, where you have a custom

condition to be evaluated, you can reuse any existing

standard OData entity inside the custom scenario, for

example, a custom condition where you require a list of

company codes in the value help. Otherwise, you can go for

your own implementation of the OData service as well. The

OData service need not be necessarily based on a CDS view

as its data source; it can be an ABAP code–based

implementation as well.

Figure 15.27 Value Helps: Approve Purchase Requisition Item Level Scenario

The mapping of the OData service and corresponding

EntitySet to the parameter is carried out in the Parameter

section of the Conditions tab itself and then displayed in

the Value Help tab of the flexible block. Click on the Help

button on the far right of the parameter, which will open the

window to maintain the OData details: Service Path,

Entity set name, and Property name in the corresponding

entity type, as shown in Figure 15.28.

Figure 15.28 Value Help via Conditions

Note

Remember, the Entity field should contain the entity set

name, not the entity type name itself.

15.3.8 Email Templates

As you saw in previous chapters, in the flexible workflow

scenario, SAP has come up with a very flexible and feature-

rich functionality for notifying users over email—email

templates. These notifications can be sent when there are

any new work items pending their actions in the SAP inbox

(the My Inbox app) or when a request is approved/rejected.

Moreover, maintaining the email templates can be

performed by business process experts either with plain text

or HTML formatting via the Maintain Email Templates app.

In the Maintain Email Templates app, you use a set of

predelivered email templates that will be triggered at

predefined actions. Whenever you need to extend the email

templates or create a new one for a custom flexible

workflow, you’ll copy he predelivered template

SWF_CRT_NOTIFY_RECIPIENTS.

Apart from this, you can also create custom email templates

which can be used for other events that aren’t part of the

out-of-the-box solution. Such functionality is configured in

the Email Template tab of the flexible block. We can

configure the email functionality for the following use cases:

Workflow End

Workflow Cancellation

Workflow Restart

Step Deadline

Exception Step Deadline

These custom email templates fetch the data for dynamic

values in the email body from custom CDS views. The

developer needs to create a CDS view in Eclipse ABAP

Development Tools (ADT) that provides leading object data

depending on the work item ID (WorkflowTaskInternalID). This

custom CDS should join standard CDS view I_WorkflowTask

with I_WorkflowTaskApplObject and again with the CDS view for

your application (generally, a custom CDS view for the

application object). The join with application object CDS will

happen based on SAPBusinessObjectNodeKey values.

Following are the prerequisites before creating the email

templates for the flexible block:

1. The custom CDS joining the CDS views of work items

and application object as described earlier should be

ready. This CDS must have WorkflowTaskInternalID as the

key field, for example, ZI_WF_EMP_REQ in our use case.

Refer to Listing 15.2 for a sample code snippet of ABAP

CDS view ZI_WF_EMP_REQ.

2. Redefine method RESULT_CALLBACK of the callback class, for

example, ZCL_EMP_FLEX_RUN_APPL_BASE in our use case. Set

export parameter EV_OUTCOME of method RESULT_CALLBACK

depending on the process result or status of your

leading business object.

3. The email subject and body should be created in SAP

email templates. This template should use CDS view

ZI_WF_EMP_REQ. Now the work item variables and the

application object’s values at runtime can be populated

into the email body using the CDS view, as shown in

Figure 15.29.

Figure 15.29 Email Templates Maintenance

Note

To maintain email templates, go to the ABAP Workbench

(Transaction SE80), right-click on the relevant package,

and select Create • Others • Email Template.

define view ZI_WF_EMP_REQ

 as select from I_WorkflowTask as WfTask

 left outer join I_WorkflowTaskApplObject as WfTaskAppObj

 on WfTaskAppObj.WorkflowTaskInternalID = WfTask.WorkflowTaskInternalID

 and WfTaskAppObj.WorkflowObjectRole = '01'

 left outer join ZI_EMPLOYEE_REQ as EmpReq on EmpReq.PERSONNELNUMBER =

WfTaskAppObj.SAPBusinessObjectNodeKey1

 {

 key WfTask.WorkflowTaskInternalID,

 key WfTaskAppObj.WorkflowTaskObject,

 …..

 /* Applciation Object */

 EmpReq.PERSONNELNUMBER,

 EmpReq.EmpName,

 EmpReq.RequestNo,

 EmpReq.CreatedOn,

 /* Associations */

 WfTask._TaskApplicationLeadingObject,

 WfTask._TaskApplicationObject,

 …..

 }

Listing 15.2 Custom CDS for Workflow Email Template

Now using the Wizard option, you can set up the email

templates for the flexible workflow scenario. In this wizard,

choose the event/use case for which email triggering needs

to be enabled. Define the outcomes, such as approve,

reject, and so on, as needed. Provide runtime class name

and email template names when prompted. Once the wizard

completes, all the relevant artifacts are linked to the

workflow scenario, as shown in Figure 15.30. Now this

template can be configured from the Maintain Email

Templates app per the requirements.

Figure 15.30 Email Templates in the Workflow Scenario

Note that, if you go to the Maintain Email Templates app,

this email template ZHR_REQ_COMPLETE_EMAIL will be

available in the predelivered templates. It needs to be

copied and customized as needed. For example, search for

custom email template “ZHR_REQ_COMPLETE_EMAIL” in the

Maintain Email Templates app, and click on the Copy

button, as shown in Figure 15.31.

Once copied, you’ll see the screen shown in Figure 15.32,

wherein you can define the email subject and email content

(Email Subject and Body HTML fields, respectively). In

addition, you can use the runtime values of the application

object from the Show Data Fields button, which brings the

variables from the CDS views you created. The variables

(CDS fields) can be identified with double braces, for

example, {{EmpName}}.

Figure 15.31 Email Template from Custom Workflow Scenario Definition

Figure 15.32 Copying Email Content in the Maintain Email Templates App

15.4 Create a Workflow Template

Using the Manage Workflows App

Now that you’ve seen the scenario editor, the elements of the

flexible block, and various objects used by the workflow

scenario, let’s look into creating the flexible workflow based

on this workflow scenario. In this section, we’ll talk about the

Manage Workflows app with reference to the custom scenario

and take our use case as a practical example.

The steps to configure the flexible workflow remain the same,

irrespective of whether the workflow is the standard SAP-

delivered scenario or the custom scenario that you created.

As you saw in Chapter 14, Manage Workflows is the key SAP

Fiori app behind setting up any flexible workflow. This app

provides an easy way to model, set up, and change the

flexible workflows as and when needed by the key users,

which shifts the duties away from the IT department. This SAP

Fiori app allows partners as well as the business process

expert to create a specific flexible workflow based on the

workflow scenario template per business requirements.

Figure 15.33 illustrates a sample view of the Manage

Workflows app opened from the SAP Fiori launchpad.

Figure 15.33 Manage Workflows App

As quick recap, let’s take a look at the functionalities

available on this screen:

 From the Workflows dropdown, you can see and select

the workflow scenarios for which the flexible workflow

is to be configured. The dropdown contains an

exhaustive list of all scenarios available in the system.

 You can search for a specific workflow using the search

bar.

 Once you select the workflow scenario from the

dropdown, you’ll see all the flexible workflows already

configured, if any, in the search results table.

1

2

3

 Once you select any flexible workflow using the radio

button in the search results, different actions become

available for that workflow:

Add: Business process owner can add a new flexible

workflow for the given scenario using Add button.

This can happen when we’re setting up the workflows

for first time, or create an additional workflow with

different precondition, or even deactivate old one

and create new one with changed business

requirements.

Copy: We can copy and existing one into new flexible

workflow and do the changes per need using Copy

button.

Deactivate: When due to some business

requirement changes at any point of time, any old

workflows are no longer needed, we can Deactivate

them.

Define Order: We can define the priority order in

which the workflows are checked for execution

depending on the matching start condition.

You can see the functionalities of the sections within flexible

workflows and how they are dependent on the elements of

the workflow scenarios in Table 15.3 and Table 15.4.

Section Field Purpose Workflow

Scenario

Element

Header Workflow

Name

Unique name of the

flexible workflow.

4

Section Field Purpose Workflow

Scenario

Element

Properties Description Describe the

business

purpose/functionality

of the workflow.

Properties Valid From Start date.

Properties Valid To End date.

Start

Conditions

Start

Conditions

(dynamic

dropdown)

Select from available

conditions. This tells

the flexible workflow

which business

entity needs to be

evaluated during

runtime.

Conditions

Start

Conditions

Start

Conditions

(text box

appears on

screen

dynamically)

Provide the value to

be compared. The

flexible workflow is

executed only if this

value tallies with the

runtime value for the

same business entity

(e.g., company

code).

Value

helps

Section Field Purpose Workflow

Scenario

Element

Step

Sequence

Steps It can be any of the

activities to be

executed by the

workflow—a

background task or

user decision.

Activity

Step

Sequence

Recipients The agents who will

be processing the

work item of the

given activity in the

Steps column.

Agent rule

Step

Sequence

Step

Conditions

Condition to be

checked before

executing that

particular step

(activity).

Conditions

Table 15.3 Add New Workflow

Section Field Purpose Workflow

Scenario

Element

Header Step Name An optional step

name.

Section Field Purpose Workflow

Scenario

Element

Header Step Type This dropdown will

display all available

activities from the

workflow scenario.

Activity

Recipients Role This dropdown

contains all

available agent

rules that can be

recipients of that

work item and need

those resolved

agents’ actions for

their completion.

Agent

rules

Recipients Step to be

completed

by

You can set whether

all the agents

resolved by the

agent rule or any

one of them is

enough to complete

the work item.

Step

Conditions

Step

Conditions

(dynamic

dropdown)

Select from the

available conditions.

Conditions

Section Field Purpose Workflow

Scenario

Element

Step

Conditions

Step

Conditions

(a text box

appears on

screen

dynamically)

Provide the value to

be compared. The

given step/activity

is executed only if

this precondition is

met.

Value

helps

Deadlines This is used for

deadline monitoring

and to send

reminders of

pending actions.

Reference

times

Table 15.4 Add New Step inside the Step Sequence

Now, choose the custom workflow scenario Custom HR

Request by Employee from the dropdown menu (see

Figure 15.34), and click Create.

Figure 15.34 Create New Workflow

Enter the Workflow Name and a meaningful Description of

the flexible workflow in the subsequent screen, as shown in

Figure 15.35.

Figure 15.35 Properties of the Custom Flexible Workflow

Navigate to the Steps tab. Click on the Create button in this

section to add a new step from the custom workflow scenario,

as shown in Figure 15.36.

Figure 15.36 Manage Workflow: Create Steps for the Custom Use Case

In the next screen, select the Step Type (from the dropdown

of different activities in the workflow scenario) and the

recipient’s role of the work item into the Role dropdown

under the Recipients heading (which contains the agent

rules defined in the workflow scenario). Click the Create

button at the bottom of the screen.

For the first level of approval, choose the recipient role as

Manager of Workflow Initiator. Similarly, create another

step for the second-level approval, and assign the HR

Administrator as the recipient role (see Figure 15.37). As

you can see, this time, the custom agent rule—Agent

Resolution for HR Administrator—is chosen in the Role

dropdown.

Figure 15.37 Agent Assignment in Flexible Workflow

Note

The manager of workflow initiator is determined from the

HR organizational reporting structure, so the corresponding

manager’s details need to be maintained in the

organizational management infotype of the employee

accordingly.

Save the flexible workflow and navigate back. Now the

workflow will be in Draft status. Select the workflow, and

click Activate (see Figure 15.38).

Figure 15.38 Activate the Draft Workflow of the Sample Use Case

Now let’s set up the email notifications. Open the Maintain

Email Templates app. Navigate to the Predelivered tab.

Search for standard template

“SWF_CRT_NOTIFIY_RECIPIENTS”, select the template, and

click Copy (see Figure 15.39).

Figure 15.39 Copying the Standard Email Template

Change the name of the template in the Email Template

field in accordance with the naming conventions to be used,

as mentioned in previous sections. In our custom use case,

90000013 is the scenario ID, 9 is the step number for level-1,

and 20 is the step number for level-2 of the approval

hierarchy. So, the email template name looks like that shown

in Figure 15.40. For the Name field, you can enter any

meaningful description.

Figure 15.40 Naming the Custom Email Template

Figure 15.41 shows the actual email body while navigating

inside the email template. Now the flexible workflow is

completely set up and is ready to be used for approval

processes.

Figure 15.41 Email Templates Subject and Body Contents

15.5 Initiating the Custom Flexible

Workflow

In real-time scenarios, the custom flexible workflow will be

triggered by invoking the corresponding workflow event

from any user exits, BAdI implementations, and so on within

any transaction, application, or custom program of any

business process per your business needs. Here, you’ll

create a dummy custom program to raise the sample use

case workflow event. Inside the custom program, you can

use the standard classes and methods available to invoke

the corresponding workflow events, which in turn triggers

the flexible workflow.

The high-level overview of the approach to call the workflow

event for the custom HR request use case is as follows:

1. Create an instance of the custom event container using

static method get_event_container of class

cl_swf_evt_event.

2. Set the event containers, for example, date IV_DATE,

using the SET method of the preceding instance. Set all

relevant event parameters as needed.

3. Call method raise of class cl_swf_evt_event and also pass

the object key. For example, Listing 15.3 shows a sample

code snippet in ABAP language that calls the raise

method of class cl_swf_evt_event to trigger custom event

START of custom class ZCL_EMPLOYEE_REQUEST_WF to pass the

event parameters via object instance lo_event_parameters.

CALL METHOD cl_swf_evt_event=>raise

 EXPORTING

 im_objcateg = cl_swf_evt_event=>mc_objcateg_cl

 im_objtype = 'ZCL_EMPLOYEE_REQUEST_WF'

 im_event = 'START'

 im_objkey = lv_objkey

 im_event_container = lo_event_parameters.

Listing 15.3 Sample ABAP Code for Raising a Custom Workflow Event

Now the entire flexible workflow and its triggering

mechanism are available for consumption. Once you trigger

the event for the workflow, for example, using the custom

program, the flexible workflow is initiated, and you can see

the work item awaiting user action in the recipient inbox.

However, even though the workflow will get triggered, you’ll

need to set up the My Inbox app configurations to be able to

view the work item of custom flexible workflows in the app.

In the next section, we’ll go through the steps for My Inbox

integrations.

15.6 My Inbox Integration

Flexible workflows use the same My Inbox app and

underlying configurations as classical workflows such as the

system alias, task gateway configurations, and so on, for

work item approvals. So, you need to just maintain the

workflow task and decision steps to bring the work item into

My Inbox. Similarly, maintain the visualization metadata for

passing the workflow runtime parameters to the target

application that will open the work item. In this section, we’ll

discuss maintaining My Inbox–related configurations for a

custom flexible workflow. In addition, we’ll take a quick look

at how the work item looks in My Inbox for our custom HR

request use case.

15.6.1 Define Step Names and Decision

Options

Go to Transaction SPRO (SAP Customizing IMG), navigate to

ABAP Platform • SAP Gateway Service Enablement •

Content • Workflow Settings, and execute Maintain

Task Names and Decision Options. As shown in

Figure 15.42, maintain the Workflow ID and Step ID for

the approval, that is, user decision activity. Navigate to

Decision Keys in the Dialog Structure for each of the

steps, and maintain the possible decisions—Approve

(positive outcome) and Reject (negative outcome). You can

configure the approval/rejection notes to be Mandatory as

well. Our custom scenario ID is WS90000013, and the step

1

2

numbers for the first and second level of approvals are

0000000009 and 0000000020, respectively .

Figure 15.42 Define Steps for My Inbox Approval

15.6.2 Define Visualization Metadata for My

Inbox

This customization steps remain the same as those for any

classical workflow or standard flexible workflow. As a quick

recap, use Transaction SWFVISU or Transaction SWFVMD1 to

maintain the visualization parameters. If you’re going to use

any custom Web Dynpro or SAP Fiori apps to display the

work item details, rather than the standard work item

viewer, then these settings are needed to pass the required

parameters from the work item in the inbox to the target

application. The target application can read these

parameters, read the workflow containers, and display the

content accordingly. Further details on this process were

3

already covered in Chapter 11, Section 11.2.3, and a brief

overview for flexible workflows can be found in Chapter 14,

Section 14.4.3, as well.

15.6.3 My Inbox for Custom Scenario

Walkthrough

Now the entire flexible workflow, its triggering mechanism,

and My Inbox settings are available for consumption. Once

you trigger the event for the workflow, for example, using

the custom program as described in Section 15.5, the

flexible workflow is initiated, and you can see the work item

awaiting user action in the recipient inbox.

Figure 15.43 shows that the work item is seen in the first

approver’s, that is, line manager’s My Inbox app along with

the corresponding heading and work item texts. The work

item texts can be customized with finer details per your

business needs.

Figure 15.43 Work Item in the First Recipient’s Inbox

Similarly, once the work item is executed positively

(approved), the work item is received by the second

approver (i.e., HR administrator’s My Inbox app), as shown

in Figure 15.44.

Figure 15.44 Work Item in Second Recipient’s Inbox

15.7 Troubleshooting

In this section, we’ll discuss the key points to ponder while

troubleshooting any flexible workflow execution. Similar to

classical workflows, while executing flexible workflows, you

may encounter different kinds of errors—incorrect master

data, missing configurations, other technical errors, and so

on.

Incorrect master data is one of the biggest contributors to

issues reported for flexible workflows in productive systems,

be it standard or custom flexible workflows. All the workflow

tasks are dependent on the underlying master data of the

leading business object for which the workflow is being

executed.

Agent determination failure is a common error due to

master data inconsistency. We observe errors such as

Agent determination for step failed or Error in

resolution of rule “ACXXXXXXXX” for step while

analyzing the workflow from the technical logs using

Transactions SWIA, SWI1, or SWI2_DIAG. For example,

Figure 15.45 shows the technical logs of a work item for the

overall release of the purchase requisition flexible workflow

in Transaction SWI2_DIAG.

Figure 15.45 Agent Determination Error from Transaction SWI2_DIAG

(Diagnosis of Workflows with Errors)

As you can see, the agent with rule managerOfManager could

not be determined for this work item, so the work item has

raised an exception. The following shows the details of

errors logged, like which exception has been raised, on

which of the work items the exception occurred, etc.:

Any user activity step requiring a business user’s action is

highly dependent on the master data, which determines

the workflow recipient. If you’re using the manager of

workflow initiator agent rule or any other HR using the

reporting hierarchy, it must be maintained in the HR

organizational management–relevant infotypes.

For role-based agent rules, at least one SAP user must be

assigned with the business role.

For rule-based agent rules, the exceptions in the function

module must be handled correctly, and it should always

return a valid agent. In nonproductive systems, the

replicated use case can be troubleshooted by simulation

using Transaction PFAC.

Similarly, if emails aren’t received in the recipient’s inbox,

the email address of the agent recipient should be

maintained. The technical logs can display errors in which

the step email couldn’t be found.

If the workflow is successfully triggered and work item can

be seen assigned to the intended agent/recipient in the

workflow logs (Transaction SWIA/SW1), but the work item

is not seen in My Inbox, then you should take the

following actions:

Make sure the user activity tasks are general tasks.

Check whether the workflow scenario ID and step

number are configured in the configuration Maintain

Task Names and Decision Options (refer to

Section 15.6).

Check Transaction SU53 for any authorization errors,

and assign the authorization roles to the user

accordingly.

Check whether no substitutions are maintained in table

HRUS_D2.

Use Transaction SWI5 (Workload Analysis) to verify

whether the work items are assigned to the user by

entering the Type as “US” and selecting the User ID.

If any error is observed in the technical logs as You’re

not one of the possible agents of task XXX, make

the task a general one for user activity (dialog work

item).

Note

Do keep an eye on authorization checks for workflow

batch users as well. In addition, remember that WF-BATCH

user has been replaced with SAP_WFRT in SAP S/4HANA

systems.

If the emails aren’t being sent after a work item is created

or approved, the workflow logs need to be analyzed for

any errors logged in the Send Email step. In the

technical details of the step history in Transaction SWI1,

the dialog work item log should contain this information.

Some of the common reasons include the email ID of the

recipient isn’t available, email template for the flexible

workflow scenario isn’t configured, the naming convention

of the template isn’t followed, SMTP node configurations

in Transaction SCOT aren’t available, and so on.

A common issue observed with email notifications is the

unavailability of email templates in productive systems.

Remember to add the email templates into a transport

request manually using the Register Extensions for

Transport app.

Sometimes, email notifications may not be sent if the job

containing program RSWF_OUTPUT_MANAGEMENT has

been suspended.

Similarly, make sure that the dependent Transaction SPRO

configurations for activating the flexible workflow are

transported into the target systems before importing the

flexible workflow from the Manage Workflow Scenarios

app. Otherwise, it may happen that the flexible workflow

is imported into the target system, but the corresponding

workflow scenario isn’t activated. In such cases, the

workflow will fail to be triggered.

Figure 15.46 shows a quick view of the technical logs for the

workflows initiated for our sample use case walkthrough.

The left side of the figure shows the Workitem Id,

execution status (in the Step History section), Task Id of

the work item being executed, Level-1 Approval,

Creation Date/Time, and so on. The right side shows

the log entries for the second dialog work item—HR

Administrators Approval.

1

2

Figure 15.46 Workflow Technical Log for HR Request Use Case

Note

Email templates are a part of the key user extensibility

concept in SAP S/4HANA. For adding email templates to a

transport request, the relevant package must be

registered using the Configure Software Packages app, a

transport request must be assigned to it, and finally the

email template will be added to the package contained in

the transport via the Register Extensions for Transport

app.

Tip

Here are a few tips to consider:

As an alternative approach, if the emails aren’t

triggered or the agent couldn’t be determined, you can

keep a break point in the corresponding hook method of

the runtime class and debug it to find the exact root

cause, for example, GET_APPL_AGENT_RULE_EXECUTION.

Remember to check the general ABAP transactions—

Transaction SLG1 (Applications Logs) and Transaction

ST22 (ABAP Dumps)—as well as workflow-specific tools

while troubleshooting.

If the flexible workflow isn’t getting triggered after

performing the intended action, use Transaction SWUS

(Workflow Test Tool) to trigger the workflow manually. It

will display error details about missing configurations or

other errors that stop the workflow being executed

successfully.

15.8 Summary

In this chapter, you’ve seen various technical artifacts

required to be built for setting up a custom workflow

scenario. We started with the underlying ABAP class

developments and business object configurations. Then, we

studied the actual workflow scenario development: context

elements, process data, different classes used in the

workflow scenario, defining various kinds of activities,

different approaches for agent determinations, value help,

email templates, and so on.

You also saw how business process experts or key users can

use this workflow scenario in the Manage Workflows app to

create flexible workflows per their business needs. We also

set up the My Inbox integration—the last mile of

configuration for the entire development.

We walked through a sample use case of a generic HR

request process along with each section of this chapter by

showcasing how different artifacts are created and how the

final output (i.e., the work item) is seen in the My Inbox app.

Even though a predelivered set of flexible workflow

scenarios is available, customers often have some highly

specific requirements that can’t be met by standard flexible

workflows. In such cases, developers can choose this path of

custom scenario development to fulfill specific business

needs.

16 SAP Fiori Applications for

Flexible Workflow

A few important SAP Fiori apps can be used in

flexible workflows in general, and it’s very important

to understand those SAP Fiori apps in order to work

on flexible workflows effectively. This chapter

explains all those important apps and how you can

use them in real-time use cases.

In Chapter 14 and Chapter 15, we explained how to activate

standard flexible workflows and build custom scenarios,

respectively. We’ve used email templates, agent

determinations, and different kinds of notification features in

flexible workflows. In this chapter, we’ll discuss the

prerequisite setups to enable in-app extensions to create

email templates, transport these email templates to other

systems, and maintain responsibility rules to manage agent

determinations using SAP Fiori apps. We’ll start by setting

up the adaptation transport organizer (ATO).

16.1 Adaptation Transport

Organizer Setup

Setting up the adaptation transport organizer (ATO) is one of

the prerequisite steps to be carried out in the SAP S/4HANA

system before implementing any in-app extensions by using

SAP Fiori apps. You must follow these steps to set up ATO

(note that this setup is required only in the development

system):

1. Open Transaction S_ATO_SETUP (ATO Setup), as shown

in Figure 16.1, in your SAP S/4HANA development

system.

2. Check if ATO is configured or not. If it’s not configured,

proceed with setup.

You can find all the setup details in Table 16.1. This one-time

setup needs to be carried out in the development system.

Otherwise, you’ll get an error stating that it needs to be set

up.

Figure 16.1 Transaction S_ATO_SETUP

Field Description

Specific Data

Prefix

setup

Prefix for the objects created in the backend

via the key user tools, which are connected

to the ATO. The suggested prefix is YY1_.

SAP recommends that enhanced email

templates start with YY1_. So, if you enter

“YY1_” as the Prefix, then you can name

those email template extensions correctly.

We’ll provide more details on email

templates in the following sections.

This prefix is used to create objects that can

be transported to follow-on systems in the

landscape. For example, as maintained in

Figure 16.1, Prefix YY1_ means that the

ABAP object name has the following format:

YY1_<object name>.

Namespace

setup

This is the namespace for all the objects

created by using key user extension apps,

for example, <Namespace><Generated

object name>.

Field Description

Local

package

Enter the local package name, for example,

“TEST_YY_KEY_USER_LOCAL”. ABAP objects

created in the local package will be

transported to the target system after

assigning them to the transportable

package.

Don’t start the package name with the “$”

symbol. Packages starting with “$”will be

deleted during upgrade, as mentioned in

SAP Note 2478895.

Sandbox

package

Enter the sandbox package name, such as

“TEST_YY_KEY_USER_SANDBOX”. ABAP

objects located in Sandbox package are

created locally and will never be

transported.

Namespace Enter the namespace if the Namespace

setup radio button is selected.

Prefix Enter a prefix such as “YY1_” if the Prefix

setup radio button is selected. These

objects will be transported to target

systems.

Sandbox

Prefix

Enter a prefix such as “YY9_” to distinguish

them as ABAP objects that much be created

locally and not transported to target

systems.

Field Description

Set up with

specific

data

After entering all the preceding specific

details per your project requirements, click

on this button to complete the ATO setup.

Actions

Set up with

default

data

Click on this button and complete the setup

by using SAP suggested data. This option is

only available when you do the setup for

the first time.

Setup read

only, Lock,

Unlock

Use these actions to set up ATO in read-only

mode. This is mostly useful in

nondevelopment environments to display

the key user development items in the

related SAP Fiori app.

Delete

Setup

This action will delete the existing ATO

setup, so use this action with caution.

Table 16.1 ATO Setup Options

16.2 Maintain Email Templates App

Now that you’ve set up ATO, it can be used to configure and

customize all email templates in general. These templates

are tightly integrated in a flexible workflow notifications

framework.

Open the Maintain Email Templates app, as shown in

Figure 16.2. It will display all custom and predelivered

templates on the main page. Per the requirement for this

use case, we must copy any predelivered template and

customize it with our own details.

Figure 16.2 Maintain Email Templates App

Let’s copy one task notification template for our standard

purchase requisition scenario and customize it with our

custom details. Copy the predelivered task notification email

template SWF_CRT_NOTIFY_RECIPIENTS to the customer

namespace by following the naming standards discussed

later in Table 16.2.

Note

You can get the relevant scenario ID by opening the

Manage Workflow Scenarios app, as shown in Figure 16.3.

The relevant scenario ID is shown on the top-left side.

Figure 16.3 Scenario ID

Follow these steps:

1. Go to the Predelivered (templates) tab in the Maintain

Email Templates app, and search for the standard

template. As shown in Figure 16.4, choose the standard

template, click on the Copy button, and provide the

template name per the naming standards provided in

Section 16.3.

Figure 16.4 Copy Standard Email Template

2. This copied template will now be available in the

Custom (templates) tab. You can double-click on the

copied template to navigate to the email details page.

You can change the name and description in this page.

Click on the Change Details button and a popup will

appear where you can make those changes to the

Name and Description fields (see Figure 16.5).

3. Click on the > symbol marked in Figure 16.5 to go to the

email Content page shown in Figure 16.6. Customize it

per requirements, and then click on the Change

Details button.

Figure 16.5 Email Template Details

Figure 16.6 Email Content

16.3 Notification Features

Similar to classical workflows, SAP has provided an easy way to send mail notifications

during the flexible workflow process. You can send email notifications when a work item

gets created to notify agents and request approval/rejection of work items by creating

relevant custom email templates, as explained in Section 16.2. Apart from these,

notifications can also be sent for final completion/rejection of workflows, deadline

monitoring, and so on by using the scenario definition standard framework in Transaction

SWDD_SCENARIO.

Open the Maintain Email Templates app, copy the predelivered standard email templates

SWF_CRT_NOTIFY_RECIPIENTS and SWF_WORKFLOW_COMPLETE_NOTIF to the customer

namespace by following the template naming standards explained in Table 16.2, and

create the templates for the required flexible workflow scenarios.

Template Naming Standard Example Details

YY1_<Scenario_ID without

WS>_CRT_<StepID>

YY1_00800173_CRT_32 Triggers

email to

recipient

immedia

after crea

the work

of the ste

maintain

the temp

name (he

for step 3

YY1_<Scenario_ID without WS>_CRT_ALL YY1_00800173_CRT_ALL Triggers

email for

dialog ste

the scen

as soon a

work item

created

YY1_<Scenario_ID>_COMPLETE_POSITIVE YY1_00800173_COMPLETE_POSITIVE Triggers

email to

requesto

when a w

item they

created h

been app

Template Naming Standard Example Details

YY1_<Scenario_ID>_COMPLETE_NEGATIVE YY1_00800173_COMPLETE_NEGATIVE Triggers

email to

requesto

when a w

item they

created h

been reje

Table 16.2 Email Template Naming Conventions

In addition to these standard template customizations, there are a few other email

notifications use cases you can create in Transaction SWDD_SCENARIO while building a

scenario which are explained in Table 16.3.

As shown in Figure 16.7, you need to go to the Email templates tab in the custom

scenario in Transaction SWDD_SCENARIO and create an email template for the required use

case. So, it’s necessary to define the Use Case of an email template to limit the selection

on the frontend side in the Manage Workflows app to the emails that make sense (e.g.,

while defining a deadline).

Use Case Details

Workflow End At the end of the workflow, the initiator will be informed about the

overall result of the approval.

Workflow

Cancellation

A notification will be sent if a workflow was canceled.

Workflow

Restart

A notification will be sent while restarting a workflow.

Step Deadline Before an activity is overdue, the possible agents will be notified so

they get a chance to process the activity in time.

Exception

Step Deadline

This will be a reminder email to notify agents to complete exception

handling actions, as per workflow design.

Table 16.3 Email Notification Use Case

As shown in Figure 16.7, different use cases are available in Transaction SWDD_SCENARIO.

Figure 16.7 Email Notification Use Cases

Let’s create one use case for deadline monitoring, and the same steps will be applicable for

all other use cases as well:

1. As shown in Figure 16.8, go to the Email Templates tab, and click on the Create

button, which is marked.

Figure 16.8 Deadline: Email Template

2. The Create new Email Template popup will be displayed as shown in Figure 16.9.

Enter a meaningful name in the Unique name area, select Step Deadline in the Use

Case dropdown, and choose the email template that was created in the backend for

deadline monitoring.

Figure 16.9 Deadline: Create New Email Template

3. Save and activate the scenario in Transaction SWDD_SCENARIO. You can see the newly

created template in the Email Templates tab in this scenario, as shown in

Figure 16.10.

Figure 16.10 Scenario: Email Template

4. Go to the Manage Workflows app, and choose this email template to send deadline

notifications for step deadlines.

16.4 Manage Teams and

Responsibilities App

As we’re moving toward an intelligent enterprise, the

enterprise should have capabilities to determine responsible

agents to work on tasks. It’s essential to define and manage

these responsibilities, including authorizations for various

contexts, and retrieve responsible agents that can react to

tasks and activities. SAP provided a new functionality in SAP

S/4HANA to determine agents by using teams and

responsibilities.

You can search for the Manage Teams and Responsibilities

app in the search bar of the SAP Fiori launchpad and open

the app, which is shown in Figure 16.11.

Figure 16.11 Manage Teams and Responsibilities

You can use this app to perform the following tasks:

Create, edit, and copy teams.

Assign team members (business partner associated with

SAP user) to teams.

Create a global ID to reference teams in other systems.

Change the team’s status via Enable/Disable. This helps

you indicate whether a team can be used for agent

determination in flexible workflows.

After you click on Create in the Manage Teams and

Responsibilities app, you need to fill out all the relevant

details as listed in Table 16.4.

Artifacts Details

Name Enter a meaningful name for the team.

Global ID A team global ID uniquely identifies a

team across multiple systems. For

example, when you need to have the

same team in production and quality

systems, or any system or service that

can store a team in responsibility

management, you need a team global ID

that is the same in all systems.

A team internal ID is generated

automatically but is unique to the system

in which it’s created, so you need a

global ID to reference the team in other

systems.

Artifacts Details

Type Type is linked with category, and,

internally, it generally refers to business

processes such as sales, procurement,

distribution, journals, and so on. SAP

provided a few standard categories for

which you can create teams by using this

app.

Note: SAP didn’t provide any

customization to add custom categories.

Status Enabled: Team can be used in agent

determination in workflows.

Disabled: Team can’t be used.

Responsibility

Definition

Responsibility definitions are nothing but

team attributes. It’s a name-value pair

that can be used to query teams, for

example, plant = 1010 in the

procurement category.

Table 16.4 Teams Artifacts

In general, the business process owner creates multiple

teams for different scenarios by having different

responsibility definitions, and then they can use those team

when setting up workflow templates in the Manage

Workflows app. As of now, this functionality is available for a

few standard workflow scenarios, and you can’t use the

same for your own custom scenarios.

16.5 Transporting Extensions

You must follow a two-step approach to transport extension

items (e.g., extensions from the Custom Fields and Logic

app, email templates, form templates, etc.) by using SAP

Fiori apps in the SAP S/4HANA system. You have two SAP

Fiori apps, Configure Software Packages and Register

Extensions for Transport, that are used to transport these

extensions. We’ll explain how to transport scenarios to other

systems using the standard view and the Manage Workflow

Scenarios app.

You have to work with the security team and get relevant

roles (standard template role: SAP_NW_APS_EXT_ATO_PK_CFG_APP)

to access these SAP Fiori tiles.

16.5.1 Configure Software Packages

The Configure Software Packages app is used to configure

software packages for transporting extension items. If you

remember, all extension items are saved in the local

package you’ve configured in the ATO setup (refer to

Figure 16.1). Once development is over, you must transport

those extension items across the landscape by saving them

into a normal package. So, with this app, the delivery

lead/project manager can configure a normal package for

transporting these extension items.

As shown in Figure 16.12, you have to search for and select

the Configure Software Packages app in the SAP Fiori

launchpad.

Figure 16.12 Configure Software Packages

You can find app details in Table 16.5.

Button Description

Add

Registration

This is used to register the existing

package for transport. You must choose the

required package in the popup and register

that for transport.

Remove

Registration

This is enabled when you choose any

registered package in the list, and it’s used

to unregister the package.

Unassign

from

Transport

Request

This is used to unassign the package from

the transport request.

Automatic

Request

Handling

This activates the automatic creation of

transport requests. This will enable the

Activate Task Handling option as well.

Transport

Request

This assigns the package to an existing

transport request, and you can see the

assigned transport request in this table

column.

Table 16.5 Configure Software Packages

You can follow these steps to register packages and assign

transport requests to the registered package:

1. Click on the Add Registration button, and choose the

required package from the popup window, as shown in

Figure 16.13. The package will be displayed in the

Register Package list.

Figure 16.13 Register Package

2. Once the package is registered, the next step is to

assign the transport request. Choose the package from

the Package column, and then click on the value help in

the Transport Request column to see all the transport

requests in the popup. Choose the correct transport, and

it will be shown in the Transport Request column in

the main table (see Figure 16.14).

Figure 16.14 Assign the Transport to the Registered Package

16.5.2 Register Extensions for Transport

The Register Extensions for Transport app is used to assign

extension items to software packages and transport

requests. The email template we’ve created in earlier

sections is saved in local project TEST_YY_KEY_USER_LOCAL,

which we set up in ATO. You have to move this email

template extension item from this local package to the

transportable package by following these steps (see

Figure 16.15):

1. Open the Register Extensions for Transport app via its

tile, as shown in Figure 16.15.

2. Select the extension item that needs to be transported,

and then click on the Reassign to Package button. The

extension item will be moved from the local package to

the actual transportable package.

Figure 16.15 Register Extensions for Transports

16.5.3 Transporting Workflow Scenario

Content

Next, you want to transport workflow definitions that you’ve

created in the development system to the production

environment. The first transport is always a full transport,

and subsequent transports are only delta transport

requests. The transport can contain the following content:

Workflow definitions, that is, workflows modeled with the

Manage Workflows app

Order of workflow definitions

Workflow templates

To transport scenario content within an on-premise

environment, you must add the transportable objects to a

Customizing transport and then follow these steps:

1. Go to Transaction SM31 in the development system.

2. Enter “V_SWF_FLEX_SCACT” in the Table/View field,

and click on the Edit button.

3. Select the scenario you want to transport, and click on

the Transport of scenario content button, as shown

in Figure 16.16. Alternatively, you can select the

scenario and press (Ctrl) + (F7).

Another option to transport the scenario content that was

created in the Manage Workflows app is directly available in

the Manage Workflow Scenarios app. There is an

Export/Import option used to export or import workflow

templates into the local drive. This is also useful to create a

backup. Generally, after completion of development, you

can export the scenario in the development system and

then import the same into the quality system.

Figure 16.16 Transport Scenario

Note

Importing replaces any artifacts, for example, workflow

templates, that already exist in the target system. These

artifacts are replaced by the newly imported one.

The export is also useful when you initially modify the

scenario in the nondevelopment system and later want to

switch to maintaining the scenario in the development

system. In this case, you first export the scenario in the

nondevelopment system and later import the file into the

development system.

16.6 Summary

In this chapter, you’ve learned about setting up ATO,

different types of notification features, the Manage Teams

and Responsibilities app, the Maintain Email Templates app,

and transporting flexible workflow scenarios across the

landscape.

In the next chapter, we’ll move on to discuss workflows with

SAP Business Technology Platform, specifically focusing on

SAP Build Process Automation.

Part III

Workflows with SAP Business Technology Platform

This part will teach you about workflow services for SAP

S/4HANA available via SAP Business Technology Platform.

You will learn about SAP Build Process Automation and

build and design workflows with SAP BTP tools and

services.

17 Introduction to SAP Build

Process Automation

So far, you’ve learned how to develop workflows

inside SAP S/4HANA. It’s equally important to know

how to develop workflows in SAP Business

Technology Platform (SAP BTP). Going forward, based

on business cases, many developments of workflows

will be done in SAP BTP as a side-by-side or cloud

native solution. You’ll learn in this chapter how to set

up and develop workflows in SAP BTP.

This chapter introduces you to the SAP Build Process

Automation service and describes how it can be used with

SAP S/4HANA for workflows. You’ll set up the service, learn

to navigate the SAP BTP cockpit, and configure basic

security. You’ll work with this service in more depth in the

remaining chapters in this part.

17.1 Overview

SAP Build Process Automation is a service within SAP BTP

This service is the replacement for the SAP Workflow

Management service. The main reason behind retiring SAP

Workflow Management and introducing the SAP Build

Process Automation service is to include all automation

features inside one service. SAP Workflow Management was

mainly used to build workflows only, whereas the SAP Build

Process Automation service includes business process

automation using workflows and task automation using

robotic process automation (RPA). This help organizations

bring process automation easily and rapidly to their

business.

Note

The SAP Workflow Management service is still available

with customers who are already subscribed to this service

and will continue to be available. However, any new SAP

BTP subscription won’t get the SAP Workflow Management

service.

The key features of SAP Build Process Automation are as

follows:

Intuitive workflow management and RPA functionality

Low-code/no-code tools to simplify workflow creation,

decision management, and process visibility

Automation of routine tasks using software bots

Intelligent document processing using artificial

intelligence (AI) and machine learning

Native process integration functionalities

Prebuilt functionality, templates, and predeveloped

industry-specific content

Trusted enterprise-grade platform

Key benefits of using SAP Build Process Automation are as

follows:

Build processes and workflows using graphical interfaces

in an intuitive way

Develop form-based workflows using the drag-and-drop

feature, which helps with rapid development, and enable

citizen developers to build the business solution with less

pro-code

Easy maintenance of workflow decision logics

Develop solution-combining process and task automation

rapidly

Prebuilt contents of SAP business processes to reuse

Predefined software development kits (SDKs) are given to

be used (e.g., Google Vision AI SDK to read documents)

17.2 Typical Use Cases for SAP

S/4HANA

These days, we see a trend toward organizations sticking

more closely to standard SAP functionality in order to, in

SAP terminology, keep the core clean (“core” here refers to

SAP S/4HANA) so that upgrades and feature packs can be

applied easily to introduce new functionalities that

accompany new versions of SAP S/4HANA. This approach

helps organizations bring innovation rapidly into their

business. However, keeping standard means not adopting

organization-specific customizations. So, to adopt

customization inside SAP S/4HANA, SAP provided features

such as in-app and developer extensibility, which help to

keep the standard functionality while allowing organizations

to add their business-specific functionalities. However, there

is another concept of extensibility called side-by-side

extensibility that takes place in SAP BTP. This type of

extensibility is usually adopted in loosely coupled custom

solutions to perform extensions outside SAP S/4HANA itself.

For workflows, SAP provides flexible workflows with the

option of customization using in-app and developer

extensibility. However, there are scenarios where you need

to build complete custom workflows or extend workflows in

such a way that can’t be done using in-app and developer

extensibility completely. Those are the business situations

where you’ll build workflow solutions using SAP Build

Process Automation, which runs on SAP BTP.

Use cases of workflows where you can use SAP Build

Process Automation on top of SAP S/4HANA are as follows:

The standard workflow provides only partial coverage of

the use case needed by the business.

The standard workflow doesn’t exist at all in SAP

S/4HANA.

The workflow will get data from SAP and/or non-SAP

systems.

The workflow will push approval/rejection data to SAP

and/or non-SAP systems.

Let’s look at one example of a workflow use case where SAP

Build Process Automation can be used. Suppose a business

needs approval workflow for dispute management in the

financial supply chain management (FSCM) area of SAP

S/4HANA. The requirements for the workflow are as follows:

The dispute administrator will create a dispute case in

SAP S/4HANA.

Creation of the dispute case will trigger a workflow.

Based on the country and company code, a business rule

will decide how many levels of approvals are needed and

who will receive the workflow task.

Here, creation of the dispute case is a standard feature of

the FSCM area in SAP S/4HANA. Triggering a workflow with

multilevel approvals isn’t a standard feature of the FSCM

area in SAP S/4HANA.

The standard workflow for FSCM dispute management only

sends email notifications. So, in this case, the standard

workflow won’t fulfill the business needs completely.

This is a typical example of when you can use the SAP Build

Process Automation service in SAP BTP to create your

workflow for this business case. How to build the solution

technically is discussed in detail in Chapter 18.

17.3 System and Service

Requirements

SAP Build Process Automation runs on SAP BTP as a service.

To use this service, you don’t need any server to be

available on-premise. However, you can choose a

hyperscaler (Microsoft Azure, Amazon Web Services [AWS],

or Google Cloud) on which SAP BTP services will run. All the

services of SAP BTP aren’t always available by default to all

hyperscalers or to all data centers. So, before onboarding

the service, you need to check the SAP Build Process

Automation documentation or the SAP BTP cockpit to

determine in which hyperscaler and in which locations this

service is available.

17.4 Setting Up the Required

Services

Setting up the SAP BTP environment properly is the most

important part to start workflow development work using

the SAP Build Process Automation service. In this section,

you’ll learn how to do this, but before that, you need to

either have access to your organization’s SAP BTP

subaccount or have already activated an SAP BTP trial

account. Usually, the SAP BTP administrator of your

organization will provide you access to the SAP BTP

subaccount.

To log in to the SAP BTP cockpit, paste the following link to

Chrome or any supported browser, and click on Sign in (see

Figure 17.1):

https://account.hana.ondemand.com/#/home/welcome.

Figure 17.1 SAP BTP Cockpit Sign-In Page

All services aren’t added by default to all subaccounts in

SAP BTP, as you may have different subaccounts for

https://account.hana.ondemand.com/#/home/welcome

different purposes. So, you now need to add the service to

the subaccount where you want to run workflow using SAP

Build Process Automation.

After login, you’ll see the SAP BTP cockpit, as shown in

Figure 17.2.

Now, you need to check the entitlements to see if the

required service is missing, so you can add it to the

subaccount if necessary. For trial accounts, by default, all

required services, including SAP Build Process Automation,

are added. However, for your organization’s subaccount,

you need to select Entitlements • Entity Assignments on

the left side of the screen, click the Configure

Entitlements button on the right side, and click Add

Service Plans, as shown in Figure 17.3.

Figure 17.2 SAP BTP Cockpit after Login

Figure 17.3 Add Service Plans

A popup will appear with the list of services that are entitled

for you. Enter search term “build”, and you’ll see the SAP

Build Process Automation option, as shown in

Figure 17.4. For a trial account, all services are preselected,

but for your organization’s SAP BTP account, you need to

select the service plan from the right side. Select the

Standard plan, and click on Add 1 Service Plan to add it

to your subaccount. Now you’re ready to start the service

setup in your SAP BTP account.

Figure 17.4 SAP Build Process Automation: Available Service Plans

It’s always recommended to use boosters to set up the SAP

Build Process Automation service to create and configure

service automatically. Don’t try to do the setup manually as

you’ll likely end up with multiple errors. Let’s start the SAP

Build Process Automation setup by clicking on the Booster

option (see Figure 17.5). Note that you should have

administrator access in the SAP BTP account to run

boosters. You’ll be taken to the following screen in the right

panel of the SAP BTP cockpit. Select Extension Suite -

Digital Process Automation from the dropdown.

Figure 17.5 Start Service Configuration with the Booster Option

You’ll get the screen shown in Figure 17.6. Start the setup

by clicking the Start button from the Set up account for

SAP Build Process Automation tile.

Figure 17.6 Start Booster Configuration of the Service

After clicking the Start button, the setup screen will appear.

The first screen will check for your authorization and

entitlement of the service for the SAP BTP account that you

selected. Once that’s all done, move to the next screen.

The next screen, as shown in Figure 17.7, will ask you to

select the subaccount under which you want to create the

workflow service and the space that you created earlier.

Figure 17.7 Configuration of the SAP Build Process Automation Service to a

Selective Subaccount and Space

If no space was created earlier, you’ll be given the option to

create a space. We didn’t create any spaces in the previous

section, so you’ll now create a new space named “PoC”.

Once you’ve entered the name “PoC” in the Space field, the

booster will create the space for you.

Now, move to the next screen where you’ll select the

default identity management for user authentication (see

Figure 17.8). Click on Next and then on the Finish button.

The process will take some time to finish. Note that if your

organization has a custom Identity Authentication service,

that also will be picked up in the Custom Identity

Providers field. You also can add the administrator via

email ID (who are part of the default identity service) in this

screen. Don’t add developers now because developers will

be added when the security team creates organization-

specific custom roles after service deployment when the

standard roles are available.

Figure 17.8 Identity Authentication Service Selection Screen

Once the process is completed, you’ll see the popup screen

shown in Figure 17.9. Navigate to the subaccount where you

created the SAP Build Process Automation service.

Now go to Instances and Subscriptions from the left

menu, and you’ll see the new subscription of SAP Build

Process Automation, as shown in Figure 17.10.

Now, click on the SAP Build Process Automation service

link to start your first workflow development. You’ll see the

screen shown in Figure 17.11 to start working with SAP

Build.

Figure 17.9 Booster Created the Service Successfully

Figure 17.10 SAP Build Process Automation Service Created and Ready to

Use

Figure 17.11 SAP Build Process Automation: Tool Landing Page after Login to

Service

17.5 Working with the Workflow

Cockpit

Once you’re inside SAP Build Process Automation, the first

tab is Lobby where you’ll see a list of projects and also a list

of prebuilt templates that you can use for rapid

development.

The next tab is Store (see Figure 17.12), which has a list of

templates, SDKs, and third-party integrations. You can add

any template, SDK, or third-party service that you want to

use in your workflow.

Figure 17.12 SAP Build Process Automation: Store

Next, the Monitor tab (see Figure 17.13) is where you’ll get

services such as Business Rules setup, process visibility

setup (Visibility Scenarios), and so on.

Figure 17.13 Monitor Workflow: Manage Business Rules and Process Visibility

Let’s now start with our first workflow project. To do so, go

to the Lobby tab, and click on the Create button, which will

open a popup with the three options shown in Figure 17.14.

Select Build an Automated Process.

Figure 17.14 Select Build an Automated Process

The screen shown in Figure 17.15 appears. Because you’re

creating a workflow project, select Business Process to

start a workflow project.

Figure 17.15 Select Business Process to Start a Workflow Project

Now enter a name in Project Name (and, optionally, a

short description) for the project on the next screen to start

your first workflow build, as shown in Figure 17.16.

Figure 17.16 Name Your Project

Figure 17.17 shows the workflow editor. This is the design-

time place where you’ll design your workflows, tasks, and

subflows. You’ll also be able to link main flows to subflows,

call APIs for external data, send mail, push workflows for

approval to inboxes, and so on.

Figure 17.17 Workflow Editor to Start Creating the Workflow

17.6 Security

SAP Build Process Automation security comes with three

role collections, as follows:

Process Automation Admin

Process Automation Developer

Process Automation Participants

All three role collections will be available in the Role

Collection section of SAP BTP when the SAP Build Process

Automation service setup is completed. An organization’s

security team should assign these roles based on tasks to

various types of users to maintain proper authorization

based on business uses.

17.6.1 Process Automation Admin

This role collection is for the administrator of SAP Build

Process Automation. Based on organizational needs, you

can create a custom role collection with the required roles

from the following list for the administrator:

AdvancedUser

Document_Information_Extraction_UI_Templates_Admin

EventsAdmin

FormsAdmin

IRPAOfficer

IRPAPersonalDataAccess

PVAdmin

PVEventSender

PVTenantOperator

RegistryAdmin

RegistryDeveloper

RuleExecutor

RuleRepositorySuperUser

SchedulerAdmin

WorkflowAdmin

WorkflowContextAdmin

WorkflowTenantOperator

17.6.2 Process Automation Developer

This role collection is for developers. As mentioned earlier,

you can always create your custom role collection and add

only the required roles from the following list. As an

example, if you don’t need to use RPA during development,

but only workflow tasks, then you don’t need to assign RPA

roles to the developer inside your custom role collection. It’s

suggested to not change anything in the following standard

role collection:

AdvancedUser

Document_Information_Extraction_UI_Templates_Admin

EventsDeveloper

FormsDeveloper

IRPAProjectMember

PVDeveloper

PVOperator

RegistryDeveloper

RuleDeveloper

RuleExecutor

SchedulerDeveloper

WMDeveloper

WorkflowBusinessExpert

WorkflowDeveloper

17.6.3 Process Automation Participants

This role collection is for the end user who will use process

automation for approvals and accessing forms to submit. As

mentioned earlier, for example, if this same user won’t

access RPA and workflows, then you can divide this role

collection into two parts and assign roles accordingly. The

standard roles for participants are as follows:

FormsParticipant

IRPAAgentUser

IRPAParticipant

RegistryDeveloper

WorkflowInitiator

WorkflowParticipant

17.7 Troubleshooting

During the SAP Build Process Automation setup, especially

when performing the setup in your SAP BTP account, you

may get issued a quota warning during the booster run.

You’ll the warning shown in Figure 17.18, which states that

there are missing entitlements with a required quota of 1.

Figure 17.18 Issue during Booster Setup

If such an issue appears, as mentioned in the Solution

section of Figure 17.18, investigate your entitlements from

the Entitlements page in the SAP BTP cockpit (choose

Entitlements • Service Assignments). If you have

entitlements, then add them; if not, connect with SAP to

provide you a larger quota.

17.8 Summary

In this chapter, you learned about the SAP Build Process

Automation functionalities and how to use this service. We

also covered in detail how to set up this service in SAP BTP

and how to set up roles for authorizations. Finally, we also

touched on troubleshooting of the service during setup.

18 Process Development

In the previous chapters, you saw how SAP Business

Workflows and flexible workflows are designed and

developed in the SAP S/4HANA system. With the

advent of clean core solutions, companies are

moving more toward SAP Business Technology

Platform (SAP BTP) as a base for the customization

and extension requirements, especially with

workflows. In this chapter, we’ll introduce you to the

world of SAP BTP-based workflows, design

techniques, and options, along with various design

concepts. Finally, we’ll implement a typical use case

with the available flavors of workflows.

In the previous chapter, we discussed what SAP Build

Process Automation is and where it can be used, depending

on your use case requirements in SAP S/4HANA. We also

saw how to set up the various services for SAP Build Process

Automation, which got us ready to kick start the design

process. In this chapter, we will first discuss some

techniques to design a workflow and then we will walk

through the two options for creating workflows on SAP BTP:

SAP Workflow Management using SAP Business Application

Studio and SAP Build Automation Process using the process

builder tool. The former is a procode tool, which an SAP BTP

developer might be more interested in, and the latter is best

suited to a citizen developer who wants a platform that

allows for the rapid design and development of processes

with low-code/no-code tools.

In this chapter, we’ll first look at the design techniques for a

typical workflow and then cover the various design

elements (controls) we can use for both SAP Business

Application Studio-based design as well as for process

builder-based design. Then we will go step-by-step through

building a typical workflow, using dispute process

management as our example, using the process builder and

then deploy that workflow. We will also discuss the same

use case built on SAP Business Application Studio.

We will close the chapter with coverage of how a few of the

key dependencies (like destinations) are set up, how to use

SAP Cloud Transport Management to transport our workflow

artifacts, and how authentication is set up. We will also

provide an overview of the key APIs SAP offers that we can

use for workflows.

18.1 Workflow Design Techniques

SAP Build Process Automation is a very new service (as of

September 2023). Many features that were available in SAP

Workflow Management aren’t included in this service yet.

You can create simple or medium complex workflows using

SAP Build Process Automation. Some examples of this are as

follows:

Workflows with multiple level approvals

Workflows with subprocesses or calling a separate

workflow from a current workflow

Workflows with branches based on decision and/or

condition

Workflows with wait time

Triggering workflows via an event or application

programming interface (API)

Triggering workflows from a form or SAPUI5 applications

Adding a robotic process automation (RPA) process inside

the workflow

So, if you have business requirements that include any of

these criteria, you’ll be able to adopt such use cases within

SAP Build Process Automation workflows. A majority of these

cases will satisfy your business needs, so you can use the

SAP Build Process Automation service. However, let’s look at

some complex business cases that have the following

requirements:

Adding complex business logic within the workflow with

scripts between passing data from one approver to

another

Complex user interface (UI) for approvers with data

addition and validation

Wait time for approvers, such as if a workflow isn’t

approved after 48 hours, the workflow will move to

another person

In such cases, we won’t be able to meet business needs

using Workflow Builder editor, which is provided for low-

code/no-code developers. In such situations, we need to

move to a pro-code solution. Pro-code solution refers to

using the SAP Business Application Studio workflow plug-in.

Yes, we still can develop complex workflows using SAP

Business Application Studio and deploy to the SAP Build

Process Automation service runtime. These workflows also

will work perfectly. More details are available in

Section 18.2.

Now, let’s talk about the design techniques for creating an

effective workflow. There are three key elements involved to

design a fool-proof workflow:

Input

What are the input parameters needed to start a workflow

and to complete each task? This involves providing the

right business input.

Processes

What business logic has to be processed to get the

required output?

Output

This is the process outcome that will be given to the next

task or to finish the workflow.

Let’s discuss in detail how you can achieve the design of an

effective workflow:

1. Understand the business flow: every workflow is built to

cater to a business process flow, so it’s important to

understand the business logic that has to be

implemented for the workflow.

2. Create a flowchart of the process steps or tasks and

document each task with a clear start- and end-of-flow

indicator. Once done, validate with your business

analyst whether the process flow you’ve drawn is

reflecting the use case build requirements.

3. Once validated, start mapping your input and output of

workflow tasks. This is the time when you’ll be planning

the input parameters and output parameters of each

task, that is, what input parameters are needed to start

the flow, what parameters will be passed by task1 to

task2, and so on.

4. Identify the steps where you need to add waiting, where

you need to call external application program interfaces

(APIs), and where you need to add business logic.

5. Identify process steps that can be reused for and from

other workflows, and put them in subflows. If your

workflow is very complex in nature, it’s always better to

spilt them into multiple subflows.

6. Finally, most important is identifying the tasks where

you can introduce automation. In fact, this is the main

reason for introducing SAP Build Process Automation and

retiring SAP Workflow Management. With SAP Build

Process Automation, you can add multiple automation

features to your workflows.

Additionally, it’s important to keep in mind that workflows

aren’t just used for approvals; you can use workflows for

business process automation as well.

18.2 Creating a Workflow Using SAP

Business Application Studio

Let’s dive deep to see in detail how to use the various

design elements and controls to build a meaningful

workflow using SAP Business Application Studio for the SAP

Workflow Management service. You’ll see how to use SAP

Business Application Studio to create a workflow module

and details about the different controls available for creating

a workflow in the following section. Later, you’ll see how to

use these controls to create an end-to-end workflow for a

specific use case, deploy it, and run it.

18.2.1 Create a Workflow Module

Let’s start by creating a workflow module in SAP Business

Application Studio, as follows:

1. Create a new project in SAP Business Application Studio

by choosing File • New Project from Template, as

shown in Figure 18.1.

2. Choose Basic Multi Target Application, and click the

Start button.

3. Provide a project name in the Enter a project name

field (here, “LeadToCashDemoProject”), and click Finish,

as shown in Figure 18.2.

4. Right-click on the mta.yaml file created in the MTA

project, and select Create MTA Module from

Template (see Figure 18.3).

5. Choose Workflow Module, and click Start, as shown in

Figure 18.4.

Figure 18.1 Create a Multi-Target Application Project in SAP Business

Application Studio

Figure 18.2 Create an MTA Project Folder

Figure 18.3 Create a Workflow Module (Part 1)

Figure 18.4 Create a Workflow Module (Part 2)

6. On the screen shown in Figure 18.5, provide the path in

the Enter the path to the folder where the module

should be generated field and the workflow module

name in the Enter the module name field. Click Next

to continue to the next screen.

Figure 18.5 Name Your Workflow Module

7. On the screen shown in Figure 18.6, provide a

namespace in the Enter a namespace field, a workflow

name in the Enter a workflow name field, and a

description in the Enter a workflow description field.

Click Finish.

Figure 18.6 Provide a Namespace, Workflow Name, and Description

8. Open the newly created workflow in the Workflow Editor,

as shown in Figure 18.7.

Figure 18.7 Workflow Editor

When you add the workflow module, it should open the

primary design canvas automatically. If not, navigate to

the folder named workflows, and double-click the

workflow file that was created. Note that there are two

controls automatically added in the designer:

StartEvent1 and EndEvent1. This represents the

workflow start event and end event. You’ll add more

controls later between these two events.

Now you’re all set to start designing your workflow.

18.2.2 Tasks in Workflows

The Workflow Designer provides the ability to create the

following tasks:

Script tasks

Service tasks

User tasks

Mail tasks

You’ll see each of these tasks in detail in the following

sections.

Script Task for Data Manipulation

One of the important activities when you design a workflow

is having ways to manipulate data. This is done using script

tasks. You define script tasks whenever you need to have

some data prepared for the next task, constructing a data

payload for a service task, and so on. A script task is

associated with a JavaScript-based program and gets

executed automatically when the workflow reaches this step

in the flow. Let’s see how to create a script task, as follows:

1. In your Workflow Designer that you created in the

previous step, click the Tasks icon in the side menu, and

select Script Task, as shown in Figure 18.8.

Figure 18.8 Create a Script Task

A new script task is added in the designer as shown in

Figure 18.9.

2. Now you need to create a JavaScript file that will get

executed when the workflow reaches this step. On the

right-side menu, you’ll see a link and a button under the

Script File header. If you have a JavaScript file already

created, you can add that using the Select button. As

we don’t have any yet in this use case, you need to

create a new JavaScript file. Click on the Create File

link (refer to Figure 18.9), and provide the name of the

JavaScript file as “InitialTask”. You can see that a .js file

got created under the scripts folder in your project, as

shown in Figure 18.10.

Figure 18.9 Script Task Created

Figure 18.10 Creating a .js File for the Script Task

3. You can now write your logic in this JavaScript file, as

shown in Figure 18.11.

Figure 18.11 Write the Data Handling Logic in the .js File

4. You can see that there are two events automatically

created in the workflow: StartEvent1 and EndEvent1.

We’ll talk about these events in detail in Section 18.2.4.

For now, let’s connect the start event to our newly

created script task. For this, select the arrow between

the start and end events and delete it. Then, click on

StartEvent1. From the resulting context menu, select

the arrow icon on the top, which represents the

sequence flow, and drop it on the script task. Do the

same from the script task, and drop it on the end task.

The resulting screen will look like Figure 18.12.

Figure 18.12 Workflow with a Script Task

Service Task for Create, Read, Update, Delete

Operations

Now that you know what a script task is, let’s look at the

service task. A workflow should be able to read, write, and

delete data objects of any given system of records. Whether

an SAP system or non-SAP system, a workflow does this

using API calls. In an SAP system, this will be done using an

OData call; for non-SAP systems, it will be a REST API call.

For this, you have the service task. Let’s create a service

task in our flow by clicking on the Tasks icon and selecting

Service Task, as shown in Figure 18.13.

Figure 18.13 Create a Service Task

Once the task is added to your Workflow Designer, select

the task. You can see the Service Task Properties in the

right-hand pane. The GENERAL tab lets you provide the

general properties of the task such as Name and

Description. Name the task “Call S/4HANA OData”.

Now, click the DETAILS tab, which is the most important

tab where you need to configure the OData/REST API details

that this task will execute (see Figure 18.14).

Figure 18.14 Configure the Service Task

Configure the service task as shown in Figure 18.15 by

following these instructions:

Destination

This is the property where you need to set the destination

name of your target system where the API needs to be

called. You define destinations in the Destination section

of the SAP BTP cockpit, which is described later in this

section. For example, we have an on-premise SAP

S/4HANA system where we need to execute OData

through this task. We define the destination in the SAP

BTP cockpit, that connects to SAP S/4HANA using the

cloud connector.

Choose a Service from

This property lets you select APIs either from SAP API

Business Hub or by defining on your own when you select

Others.

Path

This is the most important part where you define the path

to the API endpoint, which is the path to the entity set

that we’re trying to call in OData.

Path to XSRF token

Here, you define the path where the workflow module can

retrieve a Cross-Site Request Forgery (XSRF) token.

Generally, for OData, you enter the path to the OData

name removing the entity set.

Request Variable/Response Variable

These are custom context variables you define that store

the data payload to be sent to OData and the response

you get after execution, respectively.

Principal Propagation

Choose this option if you need to pass on the

authentication credentials per the logged-in user

executing this task.

The third tab in the properties section is for HEADER

information. In this section, you can add required HTTP

headers if needed, especially for REST API calls, such as the

content type, API key, and so on.

Similar to how you connected the start event to the script

task, let’s connect the script task to the service task to

make a complete flow, as shown in Figure 18.15.

Now you need to configure a destination for the service

task. Let’s understand why you need a destination and how

to configure it. A destination is a proxy object that provides

connectivity to a remote system of record, which enables

outbound communication from workflows when you make a

call through an exposed API. Whether it’s SAP S/4HANA or a

non-SAP system, you need to define a destination. Apart

from providing a means of communication, it also helps in

taking care of the authentication and other properties

centrally. You define and configure destinations in the SAP

BTP cockpit.

Let’s see how it’s done. Log in to your SAP BTP cockpit, and

navigate to your subaccount. Under the Connectivity

section on the left side menu, choose Destinations.

Figure 18.15 Configured Service Task

Click New Destination, and configure the destination.

Provide the details of the on-premise system. A sample

screen is shown in Figure 18.16. The key steps in this task

are as follows.

1. Provide a meaningful Name for the destination.

2. Select the destination Type, such as HTTP, LDAP,

EMAIL, or RFC, according to the requirement.

3. The next key element is the destination host URL. This

should represent the host name set in the cloud

connector (either original or virtual host).

4. The Proxy Type needs to be set to OnPremise for on-

premise systems and to Internet for other cloud

systems.

5. Next, select the Authentication Type. This should be

based on the kind of authentication set for the selected

destination, such as Basic, OAuth 2.0, and so on. Mostly

for on-premise destinations, you’ll select

BasicAuthentication.

6. The Location ID represents the parameter set in the

cloud connector. Leave this blank if this isn’t set in the

cloud connector.

7. Finally, provide the User ID and Password for basic

authentication, or, for OAuth 2.0, provide the client ID

and client secret. It would require multiple parameters

for other types of authentications.

8. Under the Additional Properties section, you can add

multiple parameters that may be used by the consuming

services. For SAP Business Application Studio, for

example, a few additional parameters are required, such

as WEBIDE Usage = true. You can also define the SAP

S/4HANA client ID as sap-client. This will be the

destination name that you’ll be using in the workflow

service task whenever you need to make an OData call

to this system.

Figure 18.16 Creating a Destination

User Task

One of the most important task controls in a workflow is the

user task. Using a user task, a manual input can be

introduced in the workflow, especially when the flow needs

a user input such as an approval for the workflow to move

forward.

Let’s see how a user task can be configured in the workflow.

Like you created the service task, select User Task from the

side menu bar under the Tasks menu. (Note that you can

create any controls from the context menu for any of the

controls already added in the designer.) Click on the design

screen and you can see a User Task control is placed as

shown in Figure 18.17.

A user task has quite a few properties that need to be set.

Let’s see them in detail. The Properties section on the

right has the DETAILS, USER INTERFACE, and

ATTRIBUTES tabs, along with the GENERAL tab.

Figure 18.17 Create a User Task

In the DETAILS section, you set the properties that should

appear for the user task in My Inbox, as shown in

Figure 18.18:

Priority

This can be set to Low, Medium, High, and Very High.

Subject

This is the text shown as the heading in the My Inbox

task.

Description

This is the text description of the task.

Recipients

This is where you need to set the user to which the task

needs to be assigned. This can be set as a static email

ID/user ID, but usually you want this to be resolved at

runtime. This is achieved by setting a Java Unified

Expression Language (JUEL) expression to assign the

userid from a context variable. You can set Groups email

ID as well.

Due Date

You can define a due date for the user task by setting this

checkbox. It can be set based on either a duration or a

time stamp. If its duration, you’ll get an option to select a

static value or a dynamic value that is resolved using an

expression. The duration could be a numeric value that

would represent minutes, hours, days, months, or years.

Figure 18.18 Configure Details Section of the User Task

Figure 18.19 shows how to set the Due Date of the user

task.

Figure 18.19 Set a Due Date for the User Task

Now let’s see the most important properties section of the

user task, which is the USER INTERFACE. A user task

always requires a UI screen either as a static form or a

dynamic UI, which can enable the user to add/edit data. This

can be achieved in two ways: using a form or using an

SAPUI5 component, as shown in Figure 18.20.

Figure 18.20 Types of Forms to Create for a User Interface

First, let’s discuss using a form. You can create a simple

form, add form controls using drag and drop, and configure

it. This option is a no-code option to create a rudimentary

form that can be used as a UI.

Select Form from the dropdown under the Type property. If

you already have a form created before, you can select and

add that using the Select button. If not, click the Create

File link. This option will let you create a new form. Add a

Name, ID, and Revision for the form, and then click

Create, as shown in Figure 18.21.

Figure 18.21 Create a New Form

You can see now a new form is created under the forms

folder of your project and is assigned to your user task

automatically. The screen editor will open automatically as

well, where you can add the UI controls, as shown in

Figure 18.22.

Figure 18.22 Editor Screen of the New Form

Here, you can add labels, fields, sections, subsections, and

collections, as shown in Figure 18.23.

You can now add a decision to the form. Remember, this will

be a user task where the user has to approve or reject the

task. Go to the Decisions tab of the form. Here, you can

add a decision, decision text, ID, and semantic color.

At runtime, the form automatically stores the user’s chosen

decision value in the context. To process the workflow

further, you need the decision value the user has chosen,

which can be done in a script task by accessing the decision

value by a small code snippet:

${usertasks.usertask1.last.decision}

Here, usertask1 represents the task ID of the user task we’ve

configured.

Figure 18.23 Adding Controls and Configuring the Form

Finally, you have the ATTRIBUTES tab, where you can add

custom task attributes. This data can be read at runtime

using the workflow management API and will come in handy

when you need to query a specific instance of the user task

and manipulate outside the workflow, such as when using

an API trigger.

Now let’s move on to discussing creating a UI using an

SAPUI5 component. You just saw how you can create a

simple form with low or no coding required. You might need

a more complex UI with more complex controls where data

editing with multiple backend calls may be required. In such

cases, you go for a custom UI developed using SAPUI5.

You can create a separate SAPUI5 project in SAP Business

Application Studio or a UI module within your workflow

project. Either way, once the SAPUI5 module is created and

built in the same workspace as your workflow module, you

can add this UI module in your user task by selecting the

HTML5 app.

Once configured as shown in Figure 18.24, the selected

SAPUI5 app will be used as the UI for the configured User

Task. Here the user decisions need to be stored in the

context manually and later used in the workflow just as we

previously described.

The development of the SAPUI5 applications isn’t in the

scope of this book, so we leave it to you to explore more on

SAPUI5 development using SAP Business Application Studio.

Figure 18.24 Adding an SAPUI5 Project as the UI for a User Task

Email Task

One of the most required features in a workflow is the ability

to send emails. Workflows invariably have user tasks that

require email triggers, but with SAP Workflow Management,

the email functionality is more than just an add-on to the

user task. There are possibilities of emails to be triggered

for process visibility actionable insights, which you’ll see in

the process visibility section.

For now, let’s see how an email task can be configured in

our workflow. Add an email task from the workflow by

clicking the Tasks icon in the side menu and selecting Mail

Task. Name it “Send Email”, as shown in Figure 18.25.

Figure 18.25 Create an Email Task

Go to the DETAILS tab (see Figure 18.26) in the Properties

section. Here, you set the recipient email ID, subject, and

body of the email. You can choose between having a plain

text or HTML file to be included as the body of email.

Again let’s connect the tasks and complete the flow, as

shown in Figure 18.26.

Figure 18.26 Configure the Email Task

Note

One of the important things to note for email tasks is the

Simple Mail Transfer Protocol (SMTP) destination

configuration. For the emails to be sent from workflows, a

destination with the name bpmworkflowruntime_mail needs to

be configured.

In addition, workflow management only supports SMTP

servers that are available on the internet. It doesn’t

support SMTP servers configured on premise that are

available only over Cloud Connector.

18.2.3 Using Gateways

Another major feature of a workflow is the ability to control

the flow by making decisions based on conditions and also

to do parallel processing via gateways. There are two types

of gateways, as follows:

Parallel gateway

As the name suggests, a parallel gateway gives you the

ability to design a parallel flow.

This gateway allows the flow to be split into two or more

different flows that will be executed in parallel without

checking a condition. In addition, this gateway allows all

the split flows to converge back into the main flow. The

key point to note here is that when you use parallel

gateways for a join, all split flows should complete and

reach this gateway to proceed further.

Exclusive gateway

An exclusive gateway lets the flow proceed to the next

step based on a condition.

You can make use of this gateway when the process flow

needs to be directed to a path based on satisfying a

condition. A typical example is a user task where a

decision could be either approve or reject. Based on the

action, the flow needs to be redirected.

Let’s see how to configure these two gateways. Click on the

Gateways control on the side menu bar, select Parallel

Gateway, and click on the designer screen. A parallel

gateway control is now placed. Give it a name in the

Properties section.

You can now use the context menu to add different controls

from this control. Say you need to branch the flow into two

different sets of tasks that can be run in parallel. You create

a Script Task 1, a Service Task 1, and Email Task 1 in the one

branch, and you create a Script Task 2, Service Task 2, and

Email Task 2 in another branch. When this is executed, the

control will flow to both branches simultaneously, and all the

tasks will get executed in parallel. Make sure to join the

parallel flows back again with the same parallel gateway

control to ensure the rest of the flow proceeds only when all

the branches of the parallel flow are executed. Without this,

the workflow can potentially end up in a hanging state. A

parallel gateway is configured as shown in Figure 18.27.

Now let’s see how an exclusive gate is configured. It’s very

similar to a parallel gateway except you need to define a

condition to choose a branch of execution. From the menu

bar, select Exclusive Gateway from the Gateways menu,

and click on the designer screen. An exclusive gateway

control is placed. Under the Properties section, provide a

Name for the control. Now create the same set of tasks as

you did for the parallel flow.

You’ll see a difference here, where the sequence flow arrows

show a warning symbol. This is because for an Exclusive

Gateway to work, you need to define a condition for each

of the Sequence Flows.

Click one of the Sequence Flow arrows. Under the

Properties section, give a meaningful name for that branch

of the sequence, such as “Condition True”. Likewise, name

the other branch sequence as “Condition False”. You can set

one sequence as default via the Default checkbox, which

means if the condition is either false or the condition

evaluates to error, there is always a way forward and the

workflow isn’t stopped.

Figure 18.27 Configuring a Parallel Gateway

Figure 18.28 shows how the sequence’s properties are set. A

condition can be set as a JUEL expression using a context

variable as shown in the figure. If you set the Default

checkbox, you don’t need to provide a condition.

Figure 18.28 Configure the Sequence Condition for an Exclusive Gateway

An exclusive gateway is configured as shown in

Figure 18.29. As we described earlier, the exclusive gateway

has a condition defined based on which the flow is chosen

for execution at runtime.

Figure 18.29 Configuring an Exclusive Gateway

Note

In an exclusive gateway, you need to define the condition

mandatorily at least for one of the flows. In Figure 18.28,

you can see a condition defined in the properties in JUEL,

which translates to a Boolean. One of the paths could also

bear a condition or be set as default where a condition

isn’t needed.

18.2.4 Events

Modern architecture principles tend to favor decoupled

systems where events play a major role in connecting the

processes. Every system generates events for major process

steps, and it’s the responsibility of the target system to

react to these events, thereby achieving a decoupled

architecture.

SAP Workflow Management provides capability to design

event-driven workflows. This means the workflow can

subscribe to specific events in SAP S/4HANA and proceed

with the next steps in the process flow or make decisions.

Workflows can receive events in two ways:

Directly using SAP Workflow Management APIs

Using an event broker such as SAP Event Mesh

When we talk about events in SAP Workflow Management

workflows, we need to differentiate the concept explicitly.

Events are not only the business incidents of a process but

also technical design components of a workflow. Before we

talk about the “actual” events, let’s get familiar with the

workflow events, as follows:

Start event

Every workflow instance starts with a start event, and

each instance should have one start event. When you

create a new workflow module, a Start and End event is

automatically created for you (refer to Figure 18.7). You

can also add it manually from the side menu bar under

the Events control.

You can configure a sample context as a JavaScript Object

Notation (JSON) file, as shown in Figure 18.30, which will

set the initial context attributes during this event

execution. This could be sent as a JSON payload from a

form or an API call depending on how you want to trigger

the workflow.

Figure 18.30 Setting a Sample Context for Start Event

Intermediate message events

This is arguably the most important of the event

components of a workflow. An intermediate message

event can represent an actual process event that occurs

in a source system. You define an intermediate message

event between the process steps. When the workflow

execution reaches this step, it waits for a message, and,

until then, the instance waits. The message can be

delivered to this event using a workflow management

REST API endpoint.

In the DETAILS section of the intermediate message

event properties, you can set the name of the message

that event expects and also capture the event’s data

payload in a context variable using a JUEL expression, as

shown in Figure 18.31.

Figure 18.31 Configuring the Intermediate Event Message Properties

More details on the API and how it can be used are given

in Section 18.7.

Intermediate timer events

Another key feature you need in a workflow is the ability

to pause or put a wait in the process. For example, you

have a set of two parallel workflow tasks, one of which is

dependent on the other task completion that takes an

unusually long time to complete. You can add an

intermediate timer event and define a specific interval

until which the workflow instance pauses from executing

the next steps, as shown in Figure 18.32.

The timer duration could be configured as a static

duration or an absolute time stamp. A duration will wait

for the set amount of time (minutes, hours, days, months,

and years), and a time stamp will translate to an actual

time when the event will be triggered.

Figure 18.32 Configure the Intermediate Timer Event

Intermediate escalation events

An intermediate escalation event is used to raise an event

from a referenced subflow to its parent workflow instance

that started the subflow. This is especially handy when

the referenced subflow needs to communicate a particular

state of the instance to the parent instance with which the

parent instance can take appropriate action. For example,

if the referenced subflow execution has an unexpected

error situation or delay in a particular step, it can send an

event to the parent instance. Based on the message, the

parent instance can trigger a user task along with an

email task to an operational user to take action on the

issue and resolve it.

An escalation event takes only an Escalation Code as its

configuration parameter, which is passed to the parent

instance when this event is executed (see Figure 18.33).

The parent instance should have a matching boundary

escalation event with the same escalation code.

Figure 18.33 Configuration of an Intermediate Escalation Event

End event and terminate end events

Finally, for each instance start, there should be an end. An

end event and terminate end event is used to achieve

this. When an end event is reached, the execution stops

for that branch of the flow, but if there are more branches,

the execution continues until all branches reach an end

event. When a terminate end event is reached, the entire

execution of that workflow instance is terminated, even

though other branches haven’t finished. You can toggle an

end event to make it a terminating end event and vice

versa in the Properties section.

There are two additional events bound to the user task and

referenced subflows, as follows:

Boundary timer event

A boundary timer event is used in user tasks or

referenced subflows if the flow needs to be diverted to an

alternate flow based on a timer. On the User Task

context menu or Referenced Subflow context menu,

you’ll see the option to add a Boundary Timer Event.

You can configure the timer based on either Duration or

Timestamp. The Duration is configurable as a Static

Value, Expression, or Task Due Date that can be

provided in the user task context, as shown in

Figure 18.34.

Figure 18.34 Add a Boundary Timer Event

Boundary escalation event

Similarly, a boundary escalation event can be triggered

from referenced subflows to divert the process to an

alternate flow based on an escalation event code. To set a

boundary escalation event, click the Referenced

Subflow control, and select the Boundary Escalation

Event from the context menu, as shown in Figure 18.35.

Figure 18.35 Configure a Boundary Escalation Event for a Referenced

Subflow

Note that the Escalation Code set in this event

properties needs to be sent from the referenced workflow,

which then gets caught in the parent workflow instance

where the escalating subflow instance is referenced from.

A common property for both the boundary timer event

and escalation event is the Type, which can be either

canceling or noncanceling depending on whether the

Cancel Task checkbox or Cancel Subflow checkbox is

selected. This parameter, if selected, cancels the task or

subflow, respectively.

18.3 Creating a Workflow Using

Process Builder

Let’s now move on to see how you can use SAP Build

Process Automation to create, deploy, and run a business

process in SAP BTP. Once you’ve set up SAP Build Process

Automation, you should see a link in the subaccount under

the Instances and Subscriptions section of the SAP BTP

cockpit. Clicking on this link will open the lobby of SAP Build

(see Figure 18.36).

Figure 18.36 Lobby of the SAP Build Process Automation Cockpit

This is where you start your build journeys for creating apps

and automation scenarios. All of your created projects get

listed here from which you select the individual project to

open it in the Build Editor (see Figure 18.37).

This is the place you create you process artifacts that allow

you to create, build, deploy, and monitor multistage

workflow processes. You could also create automation tasks

from here, which could be standalone or part of a business

process. (We won’t be discussing automation in detail in this

book.) Following are the key artifacts that you can create for

a process:

Processes

Forms

Approvals

Visibility scenarios

Automations

Decisions

Custom data types

Figure 18.37 Landing Page of the Build Editor

An end-to-end process is created in process builder using a

combination of the preceding artifacts along with various

controls available for a workflow process. Once you create a

process with all its artifacts, it’s then released and deployed

in sequence from this cockpit. Let’s look at each of them in

some detail.

18.3.1 Using Process Builder

From the lobby of SAP Build, you click on the Create button.

This gives you the Build an Application option using Build

an Application, Build an Automated Process, or Build

a Business Site, as shown in Figure 18.38. Click on the

Build an Automated Process option.

Next, in Figure 18.39, you see options to create Business

Process, Task Automation, and Actions. Click on

Business Process.

Figure 18.38 Selecting Build an Automation Process

Figure 18.39 Selecting the Process Automation Type

As shown in Figure 18.40, you’re prompted to name your

project. Provide a meaningful name for your project (and

optionally a description), and click on Create.

Figure 18.40 Naming the Project

This will lead to the project artifact repository, which you

saw in Figure 18.37. On this screen, you create and maintain

all your project artifacts, including both process artifacts

and automation artifacts, as well as the process visibility

artifacts for your process.

Clicking on the Create button here gives you the options to

create various artifacts for your process. As shown in

Figure 18.41, here you see options to create the following:

Automation

You can create artifacts here that can be used to define a

step in your process.

Process

This takes you to the process builder that helps you

design a process.

Form

This is used as a trigger to your process or as a user

interaction later in the process.

Approval

This is used in an approval step from My Inbox where user

interaction is required.

Visibility Scenario

This is used to provide an end-to-end view of your process

with customized key process indicators and alerts.

Decision

This is used to define a business rule for your project.

Figure 18.41 Create Your Process Artifacts

Select to create a Process first, provide a meaningful name

to your process artifact, and click Create, as shown in

Figure 18.42. The Identifier field is auto-populated, and you

can either keep it as is or modify accordingly. In addition,

add a meaningful description.

Figure 18.42 Creating a Process with a Meaningful Name

The editor now opens the process builder screen where you

start designing the process. You can see there is a start task

and an end task automatically added. The start task is

nothing but a trigger to the process. This trigger can be

defined from a built-in form or using an API call from an

external service or portal such as SAP Build Work Zone.

Under the General section on the right side (see

Figure 18.43), you can see the name of the project you had

given along with a third field called Business Key. This is a

key parameter that helps uniquely identify an instance of

your process.

You can also see a couple more tabs under Process

Details: Inputs/Outputs and Visibility. Under the

Inputs/Outputs tab, you can define data types that need

to be utilized in each step under Input parameters. These

data types could be coming from actions or subprocesses

and will be available to all steps in your process. Likewise,

the outputs will be the data types that can be made

available to another subprocess or workflow. Under the

Visibility tab, you can define those data types available in

your process that need to be utilized for a Process

Visibility dashboard.

Figure 18.43 Process Builder with a Predefined Design Template

Now your preliminary template to design your workflow is

ready. Let’s see the different artifacts and controls you can

add to your workflow to define a logical flow. Click on the +

symbol between the Trigger and End steps. You’ll see the

various options you can select from as follows (see

Figure 18.44):

Forms

Create a simple form for user input or to trigger a

workflow.

Approvals

Create a simple form for making the approval/reject

scenario visible in the My Inbox app.

Automations

Create bot-based automations to do mundane and

repetitive tasks.

Subprocess

Modularize your complex flow into multiple subflows.

Decisions

Control your process using simple-to-build business rules.

Actions

Create API endpoints that can be consumed by the steps

in your process.

Mail

Create email notification tasks in your process.

Controls

Add conditions, create multiple branches, and add a timer

to your process flow.

Figure 18.44 Artifacts Available in the Process Builder

Creating Artifacts

You can create these artifacts either from the project

Overview page as shown in Figure 18.41 and use it in

your process, or you can create the artifacts on the fly

from the process builder itself. We’ve explained the

creation of artifacts using the latter option.

Now that we’ve seen all the artifacts you can create for a

process flow, let’s discuss how to use these artifacts when

you build your process.

18.3.2 Using Triggers

You saw in the previous section that when you create a

process in process builder, a trigger task is created

automatically. This is the starting point of the process. A

trigger can be done using a form or from an external API

call.

Click on the + button on the trigger task, and you’ll see the

options to assign a trigger using the following (see

Figure 18.45):

Forms

Selecting Forms will let you create a form and assign it

automatically to the task. It also gives you the options to

navigate to a form builder tool where you can design the

form.

API

Selecting API will let you configure the trigger as an API

call. You can define the input data you require during the

start of the process under the process Input/Output

section as described in the previous section.

Figure 18.45 How to Use a Trigger to Start the Process

Note

An API trigger is done using standard process automation

APIs from your application or service. It can be tested from

any REST client. While doing so, you need to use the

definition ID of the process that will be available after you

release and deploy the process.

18.3.3 Using Forms

Form, as it literally means, is a simple way of creating a user

input application. This can be either a trigger to the process

or a task to receive input from a process user or to define an

approval scenario where a user can either approve or reject

the task, by which you can define the future steps of the

process.

Clicking on Forms let you create a new form and adds a

task in the process flow (see Figure 18.46). Here you can

create a simple form using drag-and-drop controls.

Figure 18.46 Creating a Simple Form

The form is built by dragging and dropping UI controls from

the palette from the left. The palette has rudimentary UI

controls such as Text, Heading, Checkbox, and so on, plus

a few complex controls such as Dropdown and Table. Once

you add all the controls you need and save it, each of these

UI controls needs to be bound to a context attribute. This

can be done from the process builder screen by selecting

the Form Task and editing the Input and Output tabs of

the Properties section.

A form has only one action, which is Submit. The click of

this action button submits the data to the context and

continues to the next step in the process.

18.3.4 Using Approval Forms

Approval forms are another type where the user gets to

choose a decision either to approve or reject. The action of

the user decides the next step in the process. The form is

built in a similar way as a normal form, as explained in the

previous section.

In the outlined portion in Figure 18.47, you can see two

actions: Approve or Reject. The + button emanating from

both of these can be used to proceed the flow based on the

selected decision by the user. For example, if Approve, the

process moves to the next step; if Reject, the process can

be diverted to a previous step.

Figure 18.47 Create an Approval Form

Otherwise, creation of the approval form is the same as

creating a simple form.

18.3.5 Using Automation Tasks

You can create automation projects either from the lobby or

from the process Overview of the selected project using

the menu shown earlier in Figure 18.41. The creation of an

automation itself isn’t explained here as this is out of the

scope of this book. Instead, we’ll discuss how to use a

previously created automation as a task in your process.

There are two ways to add an automation task:

From the + button menu, chose Automation, as shown in

Figure 18.48. The process builder will list the existing

automation tasks within your project that you may have

created earlier and let you select. In Figure 18.48, Trigger

Dispute Creation is an already created automation that

is available for you to select.

You can also choose to create a New Automation from

the menu. If you select this option, process builder will

automatically try to detect the agent version installed in

your machine before proceeding to the next step.

Otherwise, you can skip this and select the version of the

agent installed manually. In the next step, enter the name

of the task, and click Create.

Figure 18.48 Adding an Automation Task in Your Process

Agent Availability

At the time of writing, the agent is available only for a

Windows-based desktop; there is no agent for the Mac OS.

If you need to run your bot on Mac, you need to make use

of a virtual desktop infrastructure (VDI).

18.3.6 Using Decisions

The majority of the business process depends on some sort

of rules to proceed or determine the next course of action,

such as choosing an approver based on the sales order

amount, choosing between manual and automatic approval

based on the purchase order quantity and amount, and so

on to name a few simple ones. This can be achieved easily

using the Decisions option that lets you create a table- or

text-based decision matrix that can be consumed in your

process as a decision task (see Figure 18.49).

Figure 18.49 Creating a Decision Task

A decision task is made up of a set of decision rules that you

need set up for this task to execute. But before you create a

rule, you need to define the input and output parameters for

this task that you’ll use to hold the output result from a

given set of data inputs, as shown in Figure 18.50.

Figure 18.50 Creating and Editing the Decision Rules

To configure the rules, you need to edit the decision task.

For this, either open the Decision task from the Overview

page, or use the context menu in the task itself in the

process (three dots) to open the editor.

As you saw earlier, you have two options when creating a

business rule:

Decision Table

Multiple rule expression can be combined to produce a

specific output in a tabular fashion.

Text Rule

A simple if-then condition check is used to output a

decision as a specific decision.

Let’s see how both look in action. Navigate to the Rules tab

in the decision editor (refer to Figure 18.51), and click Add

Rule. Sometimes the tab may be hidden as a dropdown

based on the screen width. If you don’t see the tab name in

the screen, use the dropdown option to select the tab.

Figure 18.51 Navigating to the Rules Tab

In Figure 18.52, you can choose between Decision Table

and Text Rule. Select Text Rule, give a meaningful name

to your rule, and click Next.

Under the Configure Results step, select the Result

Vocabulary field where the result needs to be published.

Proceed to the next step, review, and create the rule.

Figure 18.52 Creating a Text Rule

Once you create the rule, you can configure the if-then

condition. Using operators available to select from the

context menu and context help, you can set a simple rule.

For example, you have the InpVar1 which is an input

variable available in the context. You can check if it’s

greater than 10,000 using the greater than symbol, which

the system will prompt you to choose when you’re editing

this field, as shown in Figure 18.53.

Save the rule, and now you’re ready to use the business rule

in your process.

Figure 18.53 Creating a Rule Condition and Configuring the Output

Errors

While saving your rule project, if there are any errors, they

will get listed at the bottom of the process builder window

under Design Console.

Now let’s see what a decision table looks like. This time,

after clicking on Add Rule, select Decision Table, and

provide a meaningful name, as shown in Figure 18.54.

Figure 18.54 Creating a Name for the Decision Table Rule

In the second step, configure the input variables and the

conditions, as shown in Figure 18.55.

Figure 18.55 Configuring the Input Condition Attributes

In the third step, configure the output variables, as shown in

Figure 18.56.

Figure 18.56 Configuring the Output Condition Attributes

Finally, review and create the rule, as shown in Figure 18.57.

Figure 18.57 Reviewing and Creating the Rule

After creating the decision table, now let’s configure the

conditions as you did before for text rules. You can add

multiple rows of values that represent multiple rule

conditions and their corresponding results in a tabular

fashion. Compared to a text rule that evaluates a single if-

then condition, a decision table can evaluate multiple

conditions based on the input values. Each of the evaluating

conditions and results is represented by a row in the

decision table, as shown in Figure 18.58.

Figure 18.58 Configuring the Decision Table

Now that we’ve created the business rule either as a text

rule or a decision table, you can use it in the process to

make a runtime decision.

18.3.7 Using Subprocesses

The ability to modularize a process flow is one of the most

attractive design features one could hope for when defining

a complex process. This is exactly what subprocess tasks

bring into the design of processes. You can divide a complex

flow into a main process of multiple subprocess flows and

call them from each other based on the requirement there

by also reusing the subprocesses wherever needed. You can

pass data from the calling flow to the called flow and back

too. Let’s see how this is done.

You can either create a subprocess from the lobby the same

way as you create a process or from your process flow itself

using the + symbol where you want to insert/call the

subprocess (see Figure 18.59).

Figure 18.59 Adding a Subprocess

Note

The subprocesses that you want to use in your main

process flow should be created under the same project.

In the menu, you can see all the other processes you’ve

created listed so they can be added as your subprocess

(SubProcess). You can create a + New Process using the

option and start designing it.

The most interesting option is Call Workflow. You saw how

you can create workflows using SAP Business Application

Studio in Section 18.2. SAP Build Process Automation gives

the option to call these workflows as subprocesses from

your process. This is a very convenient option that provides

great flexibility to develop the workflow using either of the

options and call them with ease.

If you select Call Workflow, you’re presented with a

workflow menu from which you can click on Add to add the

required SAP Business Application Studio–based workflow

(see Figure 18.60).

Figure 18.60 Adding an SAP Business Application Studio–Based Workflow as

a Subprocess

Note

When you add a subprocess between two steps—say step

A and step B of the main process—once step A triggers

the subprocess, it should run end to end without errors to

come back to the main flow and start step B.

18.3.8 Using Actions

Two of the main requirements from a workflow are reading

data from a given data source and writing data. The data

source could be anything, such as an SAP system, database,

or any legacy or cloud-based system of records. Workflows

designed in SAP Build Process Automation provide the

ability to make such create, read, update, delete, query

(CRUDQ) operations by using an API call either as an OData

or a REST call to the data source. Actions provides you this

ability to add such API endpoints and use them in your

process flow.

From the Lobby, click on Create to see the different

Process Automation types you can create, as shown

earlier in Figure 18.39. Here, you see the Actions option,

which is where you start adding API references that can be

used in your processes.

Once you click the Actions tile, you’ll be presented with

three options:

Business Accelerator Hub

Use this option to choose an API from the SAP Business

Accelerator Hub (https://api.sap.com) to choose a

specification of the listed SAP standard APIs.

Upload API Specification

Use this option to add a custom API specification, such as

Swagger or an SAP OData metadata file, which is of the

format XML, EDMX, or JSON by either dragging and

dropping or browsing and adding. This is particularly

useful when calling custom OData or REST endpoints

exposed by third-party source systems.

Graph

Use this option to directly add API specifications from a

connected SAP Graph instance. SAP Graph is the API

management capability withing SAP Integration Suite.

Let’s see how you can add and use an OData API in the

process flow, as follows:

https://api.sap.com/

1. In the Action menu, choose Upload API Specification.

Here you can either drag and drop your specification file

or browse the location and add it (see Figure 18.61).

Figure 18.61 Uploading an API Specification

2. Let’s add an OData specification in EDMX format. Take

an example of API_SALES_ORDER_SRV, which is a standard

OData specification available in SAP S/4HANA. Save the

metadata file to your local machine as an XML file.

3. Click Browse Files, and add this specification file. Click

on Next (see Figure 18.62).

Figure 18.62 Uploading the API Specification

4. Give the action a Project Name, and click Create (see

Figure 18.63).

Figure 18.63 Naming the Action Project

5. The action project is now created, and you can select,

add, and configure your required actions based on the

entity sets available in your API. Let’s select the GET

action for /A_SalesOrder entity (see Figure 18.64).

Figure 18.64 Selecting the Actions

6. In the next step, you can select any Input and Output

parameters, such as standard OData parameters ($skip,

$top, etc.) or the OData entity set parameters, as

shown in Figure 18.65.

Figure 18.65 Configuring the Selected Actions

7. You’re now ready to release and publish (see

Figure 18.66) the action.

Figure 18.66 Releasing the Project

These two actions do the following:

Release deploys your action to the SAP BTP runtime.

Publish (see Figure 18.67) makes your action

available to be added in your process using the

Browse action.

Figure 18.67 Publishing Your Action

8. Now go to your process, and click on the + icon where

you want to add this action. From the menu, select

Actions, and click Browse. Search for your action

project, and you can see that the action is now listed.

Click Add, as shown in Figure 18.68.

Figure 18.68 Selecting and Adding the API

You’ve now added an API action successfully to your project.

Note

To make your action call, it’s mandatory to configure the

Destination variable. This is the destination

configuration to the SAP S/4HANA system in this case. In

general, this will be the destination configuration to the

source system from where this API needs to fetch data.

Now, add this action as a task in your process per

Figure 18.69, and define the Destination variable for this

action.

Figure 18.69 Adding the Action to Your Process

Under the Inputs tab, you can configure the request

parameters that you configured in the previous steps. Now

click the Outputs tab under the action configuration. Here,

you can see the entire data structure the API returns after a

successful call to the data source. This data can be easily

consumed in a future step, say to be mapped in a form or

passed to another subprocess for further processing.

You’ve successfully configured an API action and consumed

it in the process.

18.3.9 Using Mail

Another task you can create in your process is a mail task.

As the name suggests, this will trigger an email to the

assigned user. From the + icon, select a Mail task.

On the right panel, select an email ID from the process

context for the To field. You can add CC and BCC as

additional options. Click on Open Mail Body Editor (see

Figure 18.70) to add the body of the email, and add

additional variables from the process context.

Figure 18.70 Creating a Mail Task

In the email body editor, you can add the email content text

that needs to be sent to the user. You can directly reference

variables from the context wherever you need to add

dynamic variables, as shown in Figure 18.71.

Figure 18.71 Editing the Mail Body

18.3.10 Using Controls

Now for a workflow process, it’s required that the main flow

can branch into multiple flows, with or without a condition.

You need such controls to channel the flow. For this, SAP

Build Process Automation provides three different controls

(see Figure 18.72).

Figure 18.72 Controls in a Process

The three controls are described as follows:

Condition

A condition control is used to split a flow into two

branches based on the condition evaluating to true of

false. Once you add a condition to your flow, you can do

the following.

Rename the Step Name.

Rename the “If” Branch Name.

Add a condition to the “If” branch using the Open

Condition Editor button, as shown in Figure 18.73.

This condition should be based on the value of a

process input’s parameters you configured during the

creation of the process. You can use comparison

operators in this value to be evaluated to true or false.

Figure 18.73 Condition Control

Branch

A branch is a control that can be used to split a flow into

multiple flows. All these flows run in parallel and converge

at the next process step. You can add up to 10 branches

per control. Referring to Figure 18.74, you can see the

branch control can create split flows that perform some

tasks in parallel and converge back at the subprocess task

after executing all the branched tasks.

Figure 18.74 Branch Control

Note

When multiple branches converge to a task, the

convergent task is executed only after all the branches

are executed successfully.

Wait

A wait control is a timer. You can introduce a timed delay

before the next step of the process is executed. The

Duration could be set to any integer from 1 to 999, and it

can be set in the following increments (see Figure 18.75):

Minutes

Hours

Days

Months

Figure 18.75 Wait Control

We’ve gone through the design artifacts and controls that

you have in SAP Build Process Automation. With this, we can

move on to how to build and deploy such a project.

18.4 Building and Deploying the

Project

Now that you’ve gone through the various artifacts and got

a glimpse of how you can design a process, let’s see how

you can deploy an SAP Build Process Automation project in

SAP BTP and run it.

Users from a developer background will be familiar with the

term build. This is a technical term used for the process of

assembling and packaging your project artifacts and

creating a deployment descriptor, a configuration file, and

so on, and then making them ready to be deployed to the

runtime.

In SAP Build Process Automation, because it’s a low-

code/no-code product, you need not worry about these

lengthy and cumbersome technical challenges. It’s quite

simple. Only two clicks of a button are needed: first click on

the Release button and second click on the Deploy button.

In the following sections, after we discuss those two actions,

we’ll cover how to run the project.

18.4.1 Release

Let’s see what the Release button does. Once you’ve

created your artifacts for the project, saved it, and made

sure there are no errors under the Design Console tab, you

click the Release button on the top-right corner of the

process builder, as shown in Figure 18.76. You can also click

Release from the lobby.

Figure 18.76 Releasing a Project

This action creates a version of your project artifact and

makes it ready for deployment. It changes the state of the

current editable project to Released status. Once you click,

you can assign a version number based on the kind of

change you’re making.

The first time you release a project, the version is defaulted

to 1.0.0 that you can’t change. The next time and onward,

you can choose if it’s a patch, minor change, or major

change based on which the version numbers will be

automatically incremented (see Figure 18.77). This is how

the lifecycle of your build process is maintained.

Figure 18.77 Versions When Releasing a Project

18.4.2 Deploy

Once you release the project, you can see now the same

button reads as Deploy (see Figure 18.78). Clicking on this

will deploy the entirety of the project and make it ready for

testing and later for productive usage.

Figure 18.78 Deploy Button

On the top center of the process builder window, you’ll see

the status of the project, and you can toggle between the

versions. One version will always be Editable, and you can

use the dropdown to select any Deployed or Released

version (see Figure 18.79).

You can choose to Undeploy (the Deploy button will

become UnDeploy when a deployed version is selected) a

deployed version where it will make the status of the project

Released from which you can deploy it later. Note that you

can delete a released version, but you can’t delete a

deployed version.

Figure 18.79 Versions of the Project

18.4.3 Run

Finally, once you release and deploy the project, you can

test the process using a Postman-like REST client. This is

applicable if the process trigger is an API trigger.

You can also test the process from the Process and Workflow

Definition app under the Monitor section. Here, you need to

supply the context data payload in JSON format. You can see

the required context data structure under the Triggers

section and choose the View option of the deployed trigger.

Clicking on Start New Instance (see Figure 18.80) lets you

trigger a new instance of the selected process. This is

something you can use for testing your workflow.

To start the process, you need to pass a set of input data

that you defined while designing this process as a JSON

payload. You’ll be prompted to enter this JSON data when

you click the Start New Instance button. Once entered in

Figure 18.81, click Start New Instance and then Close to

trigger the workflow instance. You can see the running

instances from the Show Instances button.

Form Trigger

A form-based trigger can be tested using the Form Link

generated under the trigger properties of the deployed

project.

Figure 18.80 Testing or Starting a New Instance of the Deployed Process

Figure 18.81 Start a New Instance after Entering a JSON Payload

18.5 Destination Configuration with

Authentication

For making an API or OData call, you need to have an

authenticated and authorized endpoint of the host system

where this API/OData service is available. For configuring

such endpoints, you use destinations in SAP BTP. This same

destination concept is used in SAP Business Process

Automation as well for making action calls to different API

endpoints. You configure a destination for each system and

define the authentication and authorization mechanism for

the same that can easily be consumed by the action task in

the process. Let’s see how a destination is configured and

how the authentication mechanism setup.

18.5.1 Destination Setup

You need to configure destinations for your action projects

to communicate with the respective backend data sources.

Whether it’s an SAP S/4HANA system or any SAP or non-SAP

system, the destination is mandatory for the API call.

The process of creating a destination is the same as you do

for the other SAP BTP services. This is done for each

subaccount in your SAP BTP cockpit. But to use this

destination in your SAP Build Process Automation service,

you need to add a couple of additional properties, as

follows:

sap.applicationdevelopment.actions.enabled = true

sap.processautomation.enabled = true

For creating a destination, you can either navigate to the

SAP BTP cockpit and choose Subaccount • Destinations

or from the SAP Build Process Automation choose Lobby •

Settings • Destinations. Once here, click on Open in the

SAP BTP cockpit.

You saw how to configure a destination earlier in

Section 18.2.2. As a sample, we’ve created an on-premise

SAP S/4HANA destination with basic authentication of the

required parameters for usage in SAP Build Process

Automation, as shown in Figure 18.82.

Figure 18.82 Additional Parameters for the Destination

Once you create the destination, you can check the

connection with a ping, which should give a Connection

Successful message. Your destination is now ready to use.

Once this is configured, navigate to the SAP Build Process

Automation lobby, and click Settings. Navigate to

Destinations, and click on the New Destination button.

You can see the newly created destination for S4HANA_PP

is available to be added. Select the S4HANA_PP

destination, and click on Add, as shown in Figure 18.83.

Figure 18.83 Adding the New Destination

Now the destination is available for use in your action

project. Once you design a process that has an actions

project, while deploying, you need to map this destination to

an environment variable that you created for the action

task.

When you add an action task in your process, you’ll now

need to define a Destination variable mandatorily under

the General Properties of Action. Figure 18.84 shows the

+ Create Destination Variable option in the dropdown,

which you should click on if you haven’t defined a

destination variable already. This will be an environment

variable that gets created for your project (see

Figure 18.85). You need to map this environment variable to

the destination you just created in the next step.

This destination can be directly created by clicking the +

Create Destination Variable option in Figure 18.84 or

from clicking the Settings icon in the process builder.

Figure 18.84 Adding a Destination Variable for Your Action Project

Figure 18.85 Adding Destination Environment Variable under Project

Properties

Once the destination variable is configured, this variable

needs to be mapped to the actual destination you created in

the previous step while deploying the project. When you

click the Deploy button after releasing your build, you’ll be

presented with the screen shown in Figure 18.86. The first

step will summarize the artifacts that you’re deploying, and,

in the second step, you’ll need to map the environment

variables you defined to the actual destination you created.

Figure 18.86 Mapping the Environment Variable to the Destination while

Deploying

18.5.2 Authentication

An API destination needs to have authentication, and SAP

BTP supports most of the standard authentication

mechanisms, such as basic authentication, OAuth 2.0,

Security Assertion Markup Language (SAML), and so on.

SAP Build Process Automation currently supports only the

following types of authentication for a destination that can

be used in an action task:

Basic authentication using the user ID and password

OAuth2ClientCredentials using the client ID and client

secret

No authentication

18.6 Transport Management

Once the design, development, and testing are completed,

now comes the task of moving the artifacts across the

landscape. Most companies have a typical three-system or

even a four-system landscape consisting of a development,

quality, and production system, sometimes with an

acceptance system. Most often, the SAP BTP subaccount

setup will be matched to the SAP S/4HANA landscape. How

do you move your built and tested project artifacts across

these subaccounts and finally to production?

This is where the SAP Cloud Transport Management service

comes into the picture. SAP Cloud Transport Management is

used to transport SAP BTP–based development, mostly any

artifact that can be packaged as an mtar file. Along with

SAP Cloud Transport Management, it’s mandatory to have

the SAP Content Agent service also subscribed and

configured to transport SAP Build Process Automation

artifacts. This isn’t required for the SAP Workflow

Management service artifacts. The rest of the process

remains the same for both.

Configuration of the SAP Cloud Transport Management

nodes isn’t explained here because it’s assumed that the

SAP Cloud Transport Management service is configured for

your landscape along with the SAP Content Agent service.

Once you release a project, go to the lobby, and under the

Versions dropdown (see Figure 18.87), click the three dots

against a deployed or released project version that you

want to transport. Here, you’ll see an option to Promote

the project. The Promote feature allows the movement of

artifacts as transport to other environments through the SAP

Cloud Transport Management and the SAP Content Agent

services.

Figure 18.87 Transport Using the Promote Feature

If SAP Cloud Transport Management and the SAP Content

Agent service are configured properly, a transport request

will be created, and the mtar file containing all the artifacts

in the project will be added to the transport request and will

be available for import in the starting node of SAP Cloud

Transport Management. From here, the transport request

can be imported to the next system and subsequently to

production.

Figure 18.88 shows a starting node in the landscape where a

transport request containing an mtar archive is created and

has been imported. You can see the status of the transport

request as Succeeded.

Once the Dev node import is successfully completed, the

transport request will show in the next node in the

landscape as Initial and waiting to be imported.

Figure 18.89 shows that the same transport request from

the development node is now waiting in the production node

to be imported. You can select the transport request and

click the Import All button to import the transport request

to the production subaccount. This import can also be

controlled by SAP Solution Manager using a Change Request

Management process.

Figure 18.88 Transport Created in the Dev Node of SAP Cloud Transport

Management System

Figure 18.89 Transport Waiting in the Production Node to Be Imported

18.7 Using APIs for SAP Build

Process Automation

SAP has provided both REST-based and OData-based APIs

that can be readily used to achieve various tasks within SAP

Build Process Automation. We’ll be looking at mainly the

APIs available for the process-related topics that we

discussed in previous sections, as follows:

Workflow

These sets of REST APIs can be used to manage the

process flows and related tasks.

Decision

These REST APIs allow you to write and retrieve business

rules decision-related data.

Inbox

These OData APIs let you retrieve My Inbox items as well

as perform operations and substitutions.

Note

More information on the available APIs and references for

SAP Build Process Automation are available at

https://api.sap.com/package/SAPProcessAutomation/all.

We won’t be discussing all available APIs here. We’ll

highlight the key APIs that will come in handy when

designing a workflow process using SAP Build Process

Automation.

https://api.sap.com/package/SAPProcessAutomation/all

18.7.1 Application Programming Interfaces

for Workflow

Table 18.1 lists some of the key APIs that can be used to

post and read workflow instance–related information (e.g.,

user task information and workflow instance details) and to

trigger intermediate message events.

API Description

User Task

GET /v1/task-instances Can retrieve all the user task

instances from all the

workflow instances unless the

status is specified. Various

parameters can be added to

this filter based on workflow

definition, workflow instance,

and so on.

PATCH /v1/task-instances/

{taskInstanceId}

Can be used to update the

properties, context, and

status of a user task. This is

extremely useful if you want

to implement some sort of

mass approval scenarios that

My Inbox doesn’t support.

Workflow Instances

API Description

POST /v1/workflow-instances Arguably the most important

API, which can be used to

start a new workflow instance.

This is very useful when

triggering a workflow from an

external UI form or service

using an API trigger.

PATCH /v1/workflow-

instances/

{workflowInstanceId}

Using this API, you can modify

the status of a running

instance.

PUT /v1/workflow-instances/

{workflowInstanceId}/context

Using this API, you can

overwrite the entirety of a

workflow instance’s context

data.

PATCH /v1/workflow-

instances/

{workflowInstanceId}/context

Using this API, you can

overwrite any part of a

workflow instance’s context

data.

Messages

API Description

POST /v1/messages This API is used to trigger an

intermediate message in SAP

Workflow Management

service-based workflows

designed in SAP Business

Application Studio. As of now,

SAP Build Process Automation

workflows don’t support

intermediate messages or

events, so this is particularly

applicable only for SAP

Workflow Management

workflows.

Table 18.1 Key APIs Available for SAP Build Process Automation Processes

and Workflows

Warning

Take extreme caution while using the context update APIs.

Make sure the workflow isn’t being executed while

updating the context as this can cause unpredictable

outcomes or even corrupt the workflow. Another option is

to first suspend the instance and then update the context.

You can resume it after.

18.7.2 Application Programming Interfaces

for Decisions

Table 18.2 describes the key API for decision tasks where

you need to execute and receive the decision rule data.

API Description

POST

/v2/rule-

services

This API is used to trigger a decision rule service

with the necessary vocabulary input. Response

will provide the decision output data according

to the rule.

Table 18.2 API for Decision Tasks

18.7.3 Application Programming Interfaces

for My Inbox

Table 18.3 lists the key APIs used for My Inbox–related

manipulation.

API Description

Operations

POST /Forward?

SAP__Origin='{SAP__Origin}'

&InstanceID='{InstanceID}'

&ForwardTo='{ForwardTo}'

This API can be used to forward

an inbox task to another user

from a remote trigger.

Substitutions

API Description

POST

/SubstitutionRuleCollection

This API can be used to create

a substitution rule for a given

user. This is useful when

administrators need to

remotely reassign critical tasks

on the absence of an explicit

substitution set by a user.

Table 18.3 Key APIs for My Inbox

18.8 Design a Process/Workflow for

the Use Case

Now that we’ve gone through details of how a workflow can

be designed using SAP Business Application Studio and

process builder, deployed it to SAP BTP, and run it, let’s

walk through a typical use case to see how a workflow can

be designed using SAP Business Application Studio and

process builder.

18.8.1 Use Case and Solution

Most manufacturing companies have a market-to-cash

process. A few also have an additional process to manage

disputes from their customers arising out of sales

completed. SAP S/4HANA doesn’t have an out-of-the-box

workflow that matches the requirements if the company

wants to implement an approval process at multiple levels.

Here’s the scenario: Within the organization, a dispute

administrator is the one who will be responsible for

managing and solving the disputes and, if required,

involving other teams (billing, logistics, finance, commerce,

etc.) based on the nature of the dispute. Within this context,

SAP Business Workflow is used to support the routing of

disputes to the different teams involved in the resolution,

record the approval, and generate commercial credit notes.

As this would be a custom workflow, the question is whether

you’re going clean core or not. If the answer is yes, then the

obvious choice of designing the workflow will be in SAP BTP

(either SAP Build Process Automation or SAP Business

Application Studio).

Coming back to the process itself, in the SAP S/4HANA

system, when disputes are created and moved to In

Progress, the dispute administrator can route the cases to

other teams for resolution or approval depending on the

amount of the sales order. When the analysis has been

completed, and all details have been populated in the

backend system, the dispute administrator can save the

dispute, leaving the processor empty and letting the system

automatically determine the processor, along with the

number of levels of approvals needed and the teams it

needs to go to. Once all the approvals are in place, the

dispute gets updated, and commercial credit notes are

automatically generated. This takes away the responsibility

from the dispute administrator to route to the right team,

and the process can be automated with a preset business

rule.

For this use case, we’ve decided that the standard workflow

won’t be suitable and need something custom. The choice is

to customize the standard workflow, but we’re going clean

core. One of the key principles of the clean core strategy is

to keep customization and extension of standard processes

away from the core SAP S/4HANA system as much as

possible.

So, the obvious option to go the SAP BTP way. Design the

custom workflow using the SAP Build Process Automation

service and trigger it from SAP S/4HANA. Once the required

steps are complete, update the dispute and release the

credit note.

Now that we know the intended solution, let’s see how this

can be implemented. We’ve decided that to design and run

the workflow in SAP BTP, but how does the trigger happen?

Another key strategy used in modern solutions is event-

driven architecture. SAP S/4HANA systems support events

for all business processes. All the important steps in a

business process can generate events, and so does our

dispute creation step. When the dispute administrator

creates and saves a dispute, an event gets generated. This

event can be used to trigger our workflow in SAP BTP using

standard APIs. The dispute details are sent across as the

data payload within the event.

Once the workflow gets triggered, it’s up to the workflow to

decide the level of approvals required and which user or

group it should go to. This part is achieved using business

rules, or decisions, as it’s called in SAP Build Process

Automation. We’ll see how simple it is to achieve this.

You saw in the previous section criteria based on which you

choose to use SAP Build Process Automation process builder

against SAP Business Application Studio to design the

workflow. Considering both as a possibility, let’s dive in and

see what it looks like and how easy or complex it is to build

the workflow using both these options.

18.8.2 Design Using Process Builder

We’ve seen the various artifacts that can be used to build a

process in process builder in previous sections. We’ll put a

few of them in use to build this process flow. Start with

creating a new SAP Build Automation Business project as

described previously in Section 18.3.1. Name it “Dispute

Approval Process”, and click Create. Open the newly

created process in the process builder.

Add the set of context variables that you’ll be using in the

flow going forward. For this, click the Inputs/Outputs tab,

and then click on the Configure button for process inputs.

Add the necessary data fields, as shown in Figure 18.90

(provided in Table 18.4), and click Apply.

Figure 18.90 Adding Context Fields

Name Identifier Type

disputeCaseGuid disputecaseguid String

disputeId disputeid String

BP bp String

Name Identifier Type

customerName customername String

companyCode companycode String

status status String

SOAmount soamount Number

noOfLevels nooflevels Level List

Table 18.4 Process Input Parameters

Note that Level List is a custom data type that you can

create in SAP Build Process Automation as an artifact. It’s

nothing but a simple structure. You can create such custom

data types to use in the automation process. Figure 18.91

shows the structure of the custom data type.

Figure 18.91 Creating a Custom Data Type

Additional Custom Data Fields

If you need to add a custom data type such as a list, you

can use Create Data Type from the project Overview.

This is especially useful to create custom arrays that can

be used in the workflow. Here we’re creating a simple list

called Level List that will hold the approval level indicator

that needs to be fed to the business rules.

You start the process with a trigger, and as this is an event-

based trigger, you need an API trigger. An API trigger is

added to the Start Process step. Click the + icon on the

Trigger step, and add a trigger named

“TriggerDisputeApprovalProcess”, as shown in Figure 18.92.

You know it’s going to be an event-based trigger, so

whenever the dispute administrator creates a dispute in the

SAP S/4HANA system, an event gets generated. This event

can be published and subscribed to through an event broker

such as SAP Event Mesh. You can subscribe to this event

mesh using a webhook, which can be the standard API used

to trigger our process.

Figure 18.92 Configuring the Trigger

The standard API looks something like this:

https://<spa-service-id>.cfapps.

<region>.hana.ondemand.com/workflow/rest/v1/workflow-

instances

This can be obtained once you release and deploy your

workflow. Navigate from the Lobby to Monitor • Manage •

Triggers, and under the Actions menu of your deployed

trigger, click View. In Figure 18.93, you’ll see the Trigger’s

URL endpoint. The payload/input is nothing but the context

data that you’ll receive from your event payload through the

API.

Figure 18.93 View Trigger Details

Tip

Note the definitionId in the trigger details. This needs to

be used to trigger your process from the API. To get this

information, from the Lobby, navigate to Monitor •

Manage • Process and Workflow Definitions, and

then select your deployed process.

Figure 18.94 shows a preview of the initial process steps

that you need to design in the process builder screen.

Figure 18.94 Initial Steps of the Process

Once the process is triggered, the first step in the process is

the processor determination. Per the requirement, it’s the

responsibility of the process to determine the processor and

level of approvals required for the given dispute data. This is

achieved using a decision artifact, as follows:

1. You can create a new decision artifact from either the

Overview page or from the process itself. Click the +

icon on the line between the trigger step and the end

step, and add a new decision.

2. Name the decision “Dispute Processor Determination”.

3. Click on the three dots icon on the step, and click Open

Editor.

4. Here you need to configure the Inputs/Outputs

parameters that will be used while executing this step.

5. Before you add the parameters, for convenience, create

a custom Data Type called DisputeProcessor, which

will be a simple list (see Figure 18.95).

6. Now, it lets you continue editing the Decision Task.

7. Click in Add Input Parameters, and enter the Name

as “Processor Input”. Add the Description, and select

the type as DisputeProcessor.

8. In the same way, set the output parameters. Click in

Add Output Parameters, and enter the Name as

“Processor Output”. Add the Description, and select

the type as DisputeProcessor (see Figure 18.96).

Figure 18.95 Creating a Custom Data Type

Figure 18.96 Setting the Decision Parameters

9. Click on the Rules tab, and click Add Rule.

10. On the Rule Details step, enter the Rule Name and

Rule Description. Select Hit Policy as First Match

(Default), as shown in Figure 18.97.

11. Click Next Step, and add the rule condition parameters.

From the Vocabulary section, click CompanyCode, SO

Amount, and Level. These fields get added to the

Condition Attributes. You can either add the

Operators here or when you add these fields to the

decision table. Click on Next Step, as shown in

Figure 18.98.

Figure 18.97 Rule Details

Figure 18.98 Configuring the Conditions

12. Set up the results by selecting the EmailId field from

Processor Output Vocabulary. Click Next Step, as

shown in Figure 18.99.

13. In the final step, you can review the configuration

you’ve done. Click Finish, as shown in Figure 18.100.

Figure 18.99 Configuring the Output Results

Figure 18.100 Reviewing the Rule

14. Now, in the newly created rule (Decision Table), add

the values as shown in Figure 18.101. Make sure you

change the EmailID field, which should be a valid user

in the SAP BTP subaccount in which you’re running this

process. The values to add are listed in Table 18.5.

'XNL1' <= 1000 =1 L1Approver@com.com

'XNL1' IN (1000 ..

10000]

=1 L1Approver@com.com

'XNL1' IN (1000 ..

10000]

=2 L2Approver@com.com

'XNL1' > 10000 =1 L1Approver@com.com

'XNL1' > 10000 =2 L2Approver@com.com

'XNL1' > 10000 =3 L3Approver@com.com

Table 18.5 Data to Be Maintained in the Decision Table

15. Make sure to maintain a valid email ID for the EmailID

field.

Figure 18.101 Decision Table

Let’s keep the rule simple for the sake of this exercise.

Based on the company code, the sales order amount, and

the number of levels, the approver is determined, as

follows:

1. For a given company code, if the sales order amount is

less than 1,000, it should have one level of approval.

2. For a given company code, if the sales order amount is

between 1,000 and 10,000, it should have two levels of

approval.

3. For a given company code, if the sales order amount is

greater than 10,000, it should have three levels of

approval.

These inputs are mapped from the event data payload when

the dispute is created.

You’ve created the rule and decision step in the process

flow. Now you need to map the data elements. Click on the

Decision step on the process flow, and click Inputs on the

right-hand side panel. Set the parameters for the fields as

shown in Figure 18.102 from the Process Inputs structure.

Figure 18.102 Decision Field Mapping

Now, when the decision table is executed, the first-level

approver is determined. A My Inbox task is created in the

next step using an approval form.

Let’s see how an approval form is created. As you saw in

Section 18.3.4, an approval form is a simple form with two

actions: Approve and Reject. An approval takes the

process to the next step, and a rejection ends the process.

Follow these steps:

1. From the Overview tab, create a new approval form,

and name it “First Level Approval”.

2. Create two more approval forms, and name them

“Second Level Approval” and “Third Level Approval”.

3. Add the screen elements shown in Figure 18.103 for all

three forms. Save the form.

Figure 18.103 Create Approval Forms

The screen should have three text controls labeled

Dispute ID, SO Amount, and Company Code.

4. Add the First Level Approval form after the decision

step using the + icon. Map the data fields as shown in

Figure 18.104. The mapping part is simple, just click on

each field. The context help will automatically open with

the Process Content screen where you can just click

the relevant field for each of the Input fields to map

them.

Per our process, once the first-level approver approves it,

the process moves to the next step. Here a condition needs

to be checked per the business requirement. Based on the

sales order amount, the condition is checked if it needs

further approvals. If not, the process is ended.

Figure 18.104 Form Field Data Mapping from the Context

Let’s add a condition, as follows:

1. Click the + icon on the line after the First Level

Approval step’s Approve endpoint, and select

Controls and then Condition.

2. Name the condition, and click Open Condition Editor

on the right panel, as shown in Figure 18.105.

3. Add the conditions as shown in Figure 18.106, and click

Apply.

4. The values should look like the following:

SOAmount is greater than 1,000

SOAmout is less than or equal to 10,000

Figure 18.105 Creating a Condition

Figure 18.106 Adding Condition Criteria

5. You’ll now see two branches created from the condition

step. One is Default, and the other is SO Amount

<>10000. If the first-level approver rejects the case,

the dispute is closed. So, let’s end this branch of the

flow by adding an End event.

6. From the SO Amount <>10000 branch, add the

existing Decision you created in the previous step but

set the parameter for the Level as Level2 from the

Process_Inputs structure (see Figure 18.107). This step

decides the second-level approver.

7. Next, add another Approval Form for the second-level

approval. Remember, you’ve already created the

Second Level Approval form in the previous step. You

just need to add that form and map the parameters from

the context to the fields defined, as shown in

Figure 18.108.

Figure 18.107 Second Decision Step

Figure 18.108 First Condition Check and Second-Level Approval Steps

You’ve now created the sequence flow after the Condition

SO Amount Between 1000 & 10000 that checks if the

sales order amount value is between $1,000 and $10,000,

which resolves to true. You need to configure the default

flow now, which resolves to false.

Add another Condition into the Default flow of the first

Condition and name it “SO<=1000”. Here, you’re going to

check if the sales order amount is less than or equal to

$1,000, as shown in Figure 18.109. If it’s less, considering

the approval has already taken place, end the flow after

connecting it to the action task, which you’ll configure later

in the exercise.

Figure 18.109 Second Condition Configuration

If the sales order amount is greater than $10,000, it should

go to the Second Level Approval and then to the Third

Level Approval. So, you connect the Default flow to the

L2 Dispute Processor Determination step you created

before. Remember, the second-level approval can be

triggered from two conditions resolving to true: sales order

amount between $1,000 and $10,000, and sales order

amount greater than $10,000. After the second-level

approver approves, you need to check if it indeed needs to

go to the third level or not. This is what you’ll do next with

another Condition.

Add another Condition from the menu via the + icon

emanating from the Approve flow in the Second Level

Approval Form. Add the condition as shown in

Figure 18.110: SOAmount is greater than 10,000.

Figure 18.111 shows how the process design looks with the

third-level approval and the action task added to align with

the end event.

You’ve seen that if the first-level approver rejects it, the

process ends, but if the second- and third-level approver

rejects it, the control comes back to the first-level approver,

and the process repeats. To achieve this, drag and connect

the ends emanating from the Reject flow of the Second

Level Approval and Third Level Approval to the L1

Dispute Processor Determination task.

Figure 18.110 Third Condition Check

Figure 18.111 Third Condition Check and Action to Update the Dispute

Finally, if all the approvers complete the approval, an

Action call is made to update the dispute status in the SAP

S/4HANA backend and to generate a credit note, and the

process ends. This is achieved by creating an action project

with the OData details as described in Section 18.3.8. Once

this is successfully done, you can add an Action task in

your flow. Here we’re using custom OData.

From the Approve endpoint of the Third Level Approval

task, click the + icon to select an Action, and go to Browse

the action library. Search for the Action project you created

for this OData call, and click Add as shown in Figure 18.112.

Figure 18.112 Add Dispute Update Action to the Process

Now you have an Action call to the dispute update OData.

You now just need to drag and drop to map the relevant

context data to the OData Inputs parameters, as shown in

Figure 18.113.

Figure 18.113 Setting the OData Parameters to Update the Dispute Case

Well, that’s it—you’ve designed the workflow process. Now

release the project and deploy it after fixing any errors

shown in the Design Console at the bottom of the editor.

To test this process, you can trigger this API from a REST

client such as Postman with the same endpoint described

previously, (refer to Figure 18.93) using the service’s OAuth

2.0 credentials. Once it’s triggered, you can check the

status of the process under Monitor • Manage • Process

and Workflow Definitions shown in Figure 18.114

Figure 18.114 Process Log Showing Successful Execution of the Process

A mail task is also configured for first-level approver to

receive an email with the notification to process the dispute

case. You can add the mail task before the second- and

third-level approver task as well.

Note

For email tasks to work, you need to configure an SMTP

destination in SAP BTP. Refer to the SAP configuration

guidelines to do this at http://s-prs.co/v569703.

http://s-prs.co/v569703

Approvers can log in to My Inbox where they see the task as

shown in Figure 18.115.

That completes the build and test of the use case. You can

see how simple and uncomplicated SAP Build Process

Automation can be for use case scenarios like this.

Figure 18.115 My Inbox Task

18.8.3 Design Using SAP Business Application

Studio

The same process can be designed using SAP Business

Application Studio as you do with the SAP Workflow

Management service. Remember that the criteria based on

which you choose SAP Business Application Studio and

process builder for a workflow is discussed in the previous

section. Based on such complexity, you can use SAP

Business Application Studio to create more complex

scenarios and more controls, along with the option to

massage the data using custom scripts. On the contrary,

SAP Business Application Studio–based design is more pro

developer and goes against the citizen developer flavor as it

involves more coding to achieve the same set of tasks. Let’s

see how that can be done.

Note

SAP Build Process Automation is still evolving as of writing

this book. Many features available in SAP Business

Application Studio–based workflow design aren’t available

in process builder.

In SAP Business Application Studio, you create a project with

a workflow module using the available templates and start

designing the same flow you created in process builder, but

let’s add some complication to it:

You need to do some data manipulation before passing

the data from first-level approver to the second and third

level.

You need to have a complex UI along with data addition

and validation before its approved at the first-level

approver.

You need to add a timer for user approval to make sure

the process isn’t stuck for a long time in the user approval

task.

You need an event-based trigger to end the workflow after

the dispute is approved and the update is confirmed by

the SAP S/4HANA system. SAP S/4HANA will generate an

event once the dispute case is updated.

You start off with creating a workflow-based project as

described in Section 18.2.1. We named our project

“DisputeApprovalProcess” and the workflow

“DisputeApprovalWorkflow”. If you created the project from

the template correctly, your project structure will look like

Figure 18.116.

Figure 18.116 Creating a Workflow Project

In the DisputeApprovalWorkflow.workflow file, start

designing the workflow. The naming of the individual tasks

and other script files are up to you.

Create the Start event, and connect it to a Script Task.

The script task is to prepare the request payload for the

business rule service call in the next step. The script task

may not only be a data preparation task, but also can be

used to implement, say, validation of the data, to convert

from one data type to another (e.g., string to integer), or to

write a bit more complex calculations.

Create a script file that contains the code in Listing 18.1.

This will be the payload for the business rules service task.

We’re setting this structure to the context variable that will

be used in the next step. Make sure to change the

RuleServiceId in the following code to the ID of your deployed

business rule service.

var ruleRequest={

 "RuleServiceId": " 2da7c433c1024c09a7db210da1c35ffc ",

 "Vocabulary": [

 {

 "DisputeObject": {

 "ApprovalLevel": 1,

 "CompanyCode":$.context.companycode,

 "SOAmount": $.context.soamount

 }

 }

]

 }

$.context.FirstLevelBRReqPayload=ruleRequest; //set to context variable

Listing 18.1 Simple JavaScript Code for the Script Task to Fetch the Business

Rules Decision

The script task will be the next step to start event in the

workflow that you’re designing and should look like the one

in Figure 18.117.

Figure 18.117 Creating a Script Task

Next create a Service Task to call the business rule to fetch

the first-level approver. Here, set the request and response

parameters as shown in Figure 18.118. Remember, you

created the response variable in our previous Script Task,

you need to use the same.

Figure 18.118 Creating a Service Task to Fetch the Business Rule

The next step is to create the user task for the first-level

approval. In the flow shown in the previous figure, we’re

using a Parallel Gateway to split the flow into two. One

flow goes directly to the User Task. The other goes to an

Email task. Here, you’re using two controls. One is an

Intermediate Timer Event for 1 minute. This is to allow

sufficient time for the User Task to be created by the

workflow runtime before you trigger the Email task because

we’re going to fetch the Task ID of this user task instance

to be added to the email task as the My Inbox link on the

email body. This will be easy for the user to click and open

the task in My Inbox. If this delay isn’t set, there is a chance

that the email task gets triggered before the User Task is

created, and email won’t have the Task Instance

reference. In addition, we’re using a Script Task here to

build the My Inbox URL with the Task Instance ID to be

used in the email task.

Note

If you need to add the My Inbox URL in the email body in

the process builder design, it needs to be sent to the

process as an initial payload field of the trigger API or in

an action call response that can be mapped as URL in the

email body.

The script used here may look something like Listing 18.2.

var

wfManagementCockpit="https://mycomp.cockpit.workflowmanagement.cfapps.eu10.hana.onde

mand.com/"

var instanceId=$.usertasks.usertask1.last.id;

var link=wfManagementCockpit+"/cp.portal/site#WorkflowTask-DisplayMyInbox?sap-ui-

app-id-hint=cross.fnd.fiori.inbox&/detail/NA/";

"/comsapspaprocessautomation.comsapspainbox/inbox.html#/detail/NA/"+instanceId+"/Tas

kCollection(SAP__Origin='NA',InstanceID='"+instanceId+"')"

$.context.MyinboxLink=link;

Listing 18.2 Script to Add a My Inbox Task URL to the Email Task

The link variable will be sent in the email body. Please

remember to change the wfManagementCockpit URL to your SAP

BTP workflow management URL in the preceding code.

Next, note that we’ve added a Boundary Timer to the

First-Level Approval user task. This is to make sure if the

user task isn’t processed by a set time, a reminder email

will be triggered that is the same as the email task you

configured in the previous step. Here, we’re reusing a task.

Another key point here to note is the UI for the User Task.

Requirement says you need a complex UI where there is a

requirement to validate and edit data before approval. So,

we’re adding a custom UI module in the mta project. Once

you add the UI module, your project structure should look

something like Figure 18.119.

Figure 18.119 UI Module for the User Task

This newly created UI module is used in the User Task,

First Level Approval shown in Figure 18.120.

Figure 18.120 Adding the UI Module to the User Task

The next step is the Condition check to see if the dispute

case is approved or rejected. This remains the same as you

did in the process builder–based flow. The remaining flow

looks something like Figure 18.121. The set of step repeats

for the second-level and third-level approval.

Figure 18.121 and Figure 18.122 show how the flow should

look when you finish the design.

Figure 18.121 Remaining Flow (Part 1)

Figure 18.122 Remaining Flow (Part 2)

Finally, after the dispute is approved, the case is updated.

But you need a confirmation from the backend before you

complete the workflow instance. For this, you use an

Intermediate Message Event. What this control does is

put the workflow in wait mode until it receives the event

trigger that this case has been updated. The event is

triggered from the SAP S/4HANA system and is published

through an event broker such as SAP Event Mesh. You use

the workflow API for messages (refer to Section 18.7.1) to

subscribe to this event topic in SAP Event Mesh and trigger

this Intermediate Message Event.

See Figure 18.123 to configure the Intermediate Message

Event. Here, the message name is

ConfirmDisputeApproval. This is the name that the API

will be using to trigger this intermediate message event for

a given workflow instance ID.

Figure 18.123 Intermediate Message Event That Waits for a Business Event

Now that we’ve designed the workflow, let’s build it and

deploy. Once deployed, you can trigger this workflow using

Postman or directly from the Manage Process and Workflows

app, same way as you did with the process builder design in

the previous section. The payload also remains the same.

Note

All your workflow definitions and instances can be

centrally monitored and triggerred from the SAP Build

Monitor tab from the Lobby. Workflows created using

SAP Business Application Studio and process builder will

appear here and can be monitored.

You can see entire execution logs of our process in the

Process and Workflow Instances app. You can see the

workflows completion steps and approvals. Note the final

highlighted steps in the logs (see Figure 18.124). This is the

event (intermediate message event in our workflow) that

was generated from the SAP S/4HANA system when the

dispute case was updated.

Figure 18.124 Execution Logs of the Workflow

We talked about the custom UI for the inbox and the

additional complexity you added. The requirement was to

have a button in the screen that would make an OData call

to the backend to validate the data on the screen before the

approver completed the task. In addition, if the approver

wants to navigate to full details of the task in the SAP

S/4HANA system, a button needs to be added in the footer.

You were able to achieve this using the custom UI, which

isn’t yet possible within the process builder design.

Figure 18.125 show how the My Inbox screen would like with

the custom SAPUI5 module. You can see the Validate

button that validates the data before submission using an

OData call, and another button on the footer called

Additional Information that lets the user navigate to a

specific screen in the SAP S/4HANA system.

Figure 18.125 Custom My Inbox Screen

18.9 Summary

In this chapter, you learned the designing technique for

workflows in SAP BTP. You saw that SAP BTP offers two

flavors of workflows. The more mature SAP Business

Application Studio–based workflow design targeted more

toward developer-centric designing of complex workflows,

and the process builder–based workflow design that is part

of the SAP Build Process Automation and SAP’s low-code/no-

code platform to build rapid workflows meant for citizen

developers. You also saw a typical use case and how it can

be designed using both the flavor and criteria to decide

what design tool to use.

SAP Build Process Automation is a relatively new product

from SAP. It’s in the process of getting more features and is

expected to mature in due course.

19 Process Visibility

Any discussion on the workflow management

capability in SAP Business Technology Platform (SAP

BTP) can’t be complete without talking about the

process visibility services. This is the one of the most

interesting and valuable features in SAP Build

Process Automation.

Process visibility refers to a specific offering within the SAP

BTP portfolio that provides advanced process monitoring

and analytics capabilities. It used to be part of SAP Workflow

Management, and while the underlying architecture for SAP

Workflow Management components changed, the process

visibility component remained the same and it was included

in SAP Build Process Automation. Process visibility enables

organizations to gain real-time insights into their business

processes across SAP and non-SAP systems, driving

operational excellence and informed decision-making. It

combines various technologies and services to deliver

comprehensive process monitoring and analytics

capabilities. Some key features and components of process

visibility include the following:

Process monitoring

Organizations can monitor end-to-end business processes,

capturing process events, activities, and data from

various systems and applications. It provides real-time

visibility into process execution, allowing stakeholders to

track the progress and performance of critical processes.

Process analytics

Process visibility leverages analytics capabilities to

transform process data into meaningful insights. It offers

advanced analytics tools and prebuilt dashboards for

analyzing process performance, identifying bottlenecks,

and uncovering optimization opportunities.

Event-driven architecture

The solution follows an event-driven architecture,

capturing and processing events from different systems,

applications, and sensors. It enables organizations to

respond in real time to events and triggers within their

business processes, facilitating proactive decision-making

and action-taking.

Intelligent business operations

Process visibility incorporates intelligent technologies

such as artificial intelligence (AI) and machine learning to

enhance process monitoring and decision-making. It

enables organizations to apply predictive and prescriptive

analytics, identify patterns and anomalies, and automate

decision-making processes.

Integration capabilities

Process visibility integrates with various SAP and non-SAP

systems, allowing organizations to monitor and analyze

end-to-end processes across heterogeneous landscapes. It

supports data integration, connectivity, and

interoperability, ensuring seamless visibility across

systems, applications, and processes.

Collaboration and alerts

The solution provides collaboration features to facilitate

communication and collaboration among stakeholders

involved in the process. It allows for sharing information,

exchanging messages, and initiating actions based on

process events. Alerts and notifications can be set up to

notify stakeholders about critical process events or

deviations.

Process visibility empowers organizations to drive process

optimization, improve operational efficiency, and enhance

customer satisfaction. By gaining real-time insights into

their business processes, organizations can identify

bottlenecks, streamline operations, and make data-driven

decisions to stay competitive in today’s digital landscape.

It’s important to note that SAP BTP is a comprehensive

platform offering with various services and components, and

process visibility is one of the capabilities provided within

this platform. Organizations can leverage other services

within SAP BTP, such as integration services, application

development tools, and data management services, to

enhance their process visibility capabilities further.

In this chapter, we’ll discuss how to configure process

visibility, explore the testing process visibility scenario, walk

you through process monitoring and real-time insights, show

you how to add workflow actions to a dashboard, and

discuss using application programming interfaces (APIs).

19.1 Configuring Process Visibility

Process visibility comes with SAP Build Process Automation.

In the following sections, you’ll see how to set up process

visibility scenarios in SAP Build Process Automation. There

are four broad steps:

Configuring the visibility scenario with one or more

processes

Adding one or more processes is the first step for

configuring a visibility scenario.

Defining the correlation between processes

This is only applicable if more than one process is

included.

Configuring phases, states, statuses, sub-statuses,

attributes, and actions

Phases refers to a sequence of process steps, states are

various possible states of the instance of a scenario,

statuses and sub-statuses refer to the status of a scenario

instance, attributes are meaningful information about a

scenario instance, and actions refer to how to act on

certain situation in a process instance.

Configuring the performance indicators that show the

aggregated information of a measure, grouped by

dimension, with the applied filters.

These steps are described in detail in the following sections.

19.1.1 Roles

Access to different features in process visibility can be

controlled through the roles listed in Table 19.1. Before you

begin configuring process visibility, make sure that your

user ID has the PVAdmin and the PVDeveloper roles assigned to

it. We’ll use the same dispute management process defined

and used in Chapter 18 to build a process visibility scenario.

Role Role Description

PVAdmin This role provides permission to do the

following:

Access the Event Acquisition and

Monitor Visibility Scenarios tiles

Push events

View all the deployed scenario

definitions

View the acquired events

Trigger processing of data

View errors related to data acquisition

View information and errors related to

the processing of data

PVDeveloper This role provides permission to do the

following:

Access the Configure Visibility

Scenarios tile

View all the scenarios

Create, edit, save, and activate

scenarios

Export the scenarios

Import the scenarios

Role Role Description

PVOperator This role provides permission to do the

following:

Access the Process Workspace app

View metadata of the available

scenarios

Fetch all the scenario instances

Perform aggregation, filtering, and

search on the scenario instances

PVEventSender This role provides permission to push

events to process visibility.

PVTenantOperator This role provides permission to do the

following:

Delete events

Delete scenarios definitions

Table 19.1 Key Roles to Work with Process Visibility

Note

Custom roles can also be created out of these standard

roles to apply further control on access to users. There are

two types of data level authorization possible in process

visibility:

Scenario level

Granular access can be given to a scenario level, for

example, the lead-to-order scenario.

Scenario attribute level

This enables further granular control at an attribute

level of a process visibility scenario. For example, the

user can access the lead-to-order scenario data where

the attribute salesOrganization equals SO1.

19.1.2 Process Preparation

Before creating a visibility scenario, you need to prepare the

process by adding the attributes that you want to include in

the scenario:

1. In the process builder, open the process, as shown in

Figure 19.1.

Figure 19.1 Opening the Process in Process Builder

2. On the right-hand side of the screen shown in

Figure 19.2, select the Visibility tab .

3. Click on the + sign on the right panel to add the

relevant attributes from the process.

4. Add the required attributes as shown in Figure 19.2 .

Figure 19.2 Adding Attributes to the Visibility Scenario

5. Follow the same approach to add other attributes as well

(see Figure 19.3).

1

2

3

Figure 19.3 Required Attributes Added

6. After all the required attributes are added, click on the

Save button at the top-right corner of the screen to

save the work.

19.1.3 Create Visibility Scenario

There are different ways to create a visibility scenario: from

the left navigation pane, or from the process Overview

screen as described in this section.

From the left navigation pane, click on the + button. Then

click on Create • Visibility Scenario, as shown in

Figure 19.4.

Figure 19.4 Creating the Visibility Scenario

Set Name, Identifier, and Description to something

meaningful, and then click on Create, as shown in

Figure 19.5. The Identifier field gets populated

automatically as you fill in the Name field. This is the

unique identifier of the visibility scenario. There can’t be

another scenario with the same identifier.

Figure 19.5 Creating the Visibility Scenario

Now that the visibility scenario is created, you need to

configure it.

19.1.4 Configure Visibility Scenario

When you open a visibility scenario, by default, the

Processes tab gets opened. Before you add the required

process (or processes), you need to do some minor changes

in the General tab. This isn’t critical as far as the desired

functionality is concerned, but it’s a good practice to follow.

To make it easier to see the instances that are being

processed, go to the General tab , and enter the value of

the Instances Label field to “Disputes” and the Instance

Label field to “Disputes” , as shown in Figure 19.6.

Figure 19.6 Configuring the Visibility Scenario: General Tab

19.1.5 Add Process to the Visibility Scenario

1

2

Next, click on the Processes tab , click on the + sign ,

and then click on Add Process , as shown in Figure 19.7.

In the popup that appears , select the Dispute Approval

Process, the creation of which is discussed in the previous

chapter of this book.

Figure 19.7 Adding the Process to the Visibility Scenario

Note

Here are a couple notes on this step:

More than one process can be added into a process

visibility scenario.

If any changes are made in the process used in the

visibility scenario, it needs to be reimported. This will

ensure that the changes made in the process are also

available to the visibility scenario.

Once the process gets added to the visibility scenario, you’ll

be able to see the events that may occur during the process

and the context attributes that are available within the

process, as shown in Figure 19.8.

1 2

3

4

Figure 19.8 Events and Context Attributes Available in the Visibility Scenario

Click the pencil icon next to a context attribute to check the

data type and (as necessary) change it to match the correct

data type that you designed for the attributes.

Figure 19.9 Correcting the Data Types of Context Attributes

As shown in Figure 19.9, in this case, the data type of the

Level1, Level2, and Level3 attributes needs to be

changed to Integer , after which you should click OK .

SOAmount also needs its data type to be changed to

Double.

19.1.6 Configure Phases

A process consists of various parts that can be identified

through the concept of phases. Phases help identify a

1 2

sequence of process steps that are part of the visibility

scenario. They become handy when the business user

needs to track and analyze specific parts of the visibility

scenario. Steps to configure a phase are as follows:

1. Go to the Phases tab, and then click on + to add a

phase, as shown in Figure 19.10 .

2. In the Add Phase dialog box, provide a Name and ID

for the phase , and then click on OK .

Figure 19.10 Configuring Process Phases

3. Define the start of this phase by choosing the required

start event from the Start Events dropdown list .

Here, you choose First level Approval Created (see

Figure 19.10).

4. Define the end of this phase by choosing the required

end events from the End Events dropdown list. Here,

you choose Third Level Approval Completed .

5. Save the process by clicking on the Save button on the

top-right corner.

1

2 3

4

5

Note

Some optional configurations are available here, as

described in the following:

Navigation Link

If you want the user to refer to some additional

information available externally to the running instance

of the process, it can be enabled through this navigation

link by section. Note that an environment variable of

type Destination needs to be configured for this

purpose. It can be either a complete application URL or

can have the host to connect to. The path attribute here

needs to be filled with the relative URL.

Conditions for Exclusion

A phase of the process can be hidden by defining this

attribute. Phases of the process will be displayed in the

instance details view based on the evaluation of the

phase conditions.

19.1.7 Configure Status

Status shows the instance status based on how the instance

is progressing. The progress of an instance is determined by

targets, phases, and custom events. The process visibility

scenario provides some standard statuses (see Table 19.2)

and sub-statuses (see Table 19.3).

Status Description

Status Description

Critical An open instance of the process under

consideration is in Critical status when the

elapsed time is more than the target cycle

time, or a certain condition is met for the

instance, for example, one of the sub-

statuses defined under it becomes true.

At Risk An open instance of the process under

consideration is in At Risk status when the

target cycle time is higher than the threshold

target cycle time, or a certain condition is

met for the instance, for example, one of the

sub-statuses defined under it becomes true.

On Track An open instance of the process under

consideration is in On Track status when it’s

neither critical, nor at risk.

Completed

without

Violation

An instance of the process under

consideration is in Completed without

Violation status when it’s completed within

the target cycle time without any deviation.

Completed

with

Violation

An instance of the process under

consideration is in Completed with

Violation status when the process is

complete, but the elapsed time is higher

than the target cycle time.

Table 19.2 Statuses Available Out-of-the-Box in Visibility Scenarios

There is a default sub-status for each of the statuses as

mentioned in Table 19.3. These are used for more fine-

grained performance indicators, which is one of the key

features of process visibility.

Status Sub-

Status

Description

Critical Overdue This sub-status appears only if

the target is defined.

At Risk Threshold

Violation

This sub-status appears only if

the target is defined.

On Track On Time This sub-status denotes that

the process instance is

completed before the target

cycle time decided for the

process.

Completed

without

Violation

Completed

without

Violation

This status appears when a

process instance is completed

on time without any deviation

regarding the allocated time.

Completed

with

Violation

Completed

with

Violation

This status appears only if the

target is defined.

Table 19.3 Sub-Statuses Available Out-of-the-Box in Process Visibility

In our dispute management process, there are three levels

of approvals needed based on the sales order amount

(SOAmount). You want to measure the process through

performance indicators by these approval levels. For

example, you might want to see the number of instances of

the dispute management process where the first-level

approval is in place but the final, that is, the third-level

approval, is still missing. For that purpose, you need to

define the following sub-statuses:

Critical

You want to flag the process instances in Critical status

when second-level approval is complete, but the third-

level approval is still pending beyond a certain target

cycle time. In the interest of time, you make this threshold

time duration as 2 minutes, although making it a day or

two may be more practical in reality. Steps for creating

the custom sub-statuses are as follows:

Click on the Status tab, which is shown in Figure 19.11.

Under the Sub-Stats section, select the Critical sub-

status.

Click on the + button.

Add a unique name in the Name field. The sub-status

ID will automatically be populated.

Click on the OK button

Choose Event A occurred and not Event B in a

Timeframe from the Expression Type dropdown. Set

the Duration to 2 Min for easy testing of the scenario.

Figure 19.11 Configuring Process Phases

At Risk

Similar to the previous status, you want to flag a process

instance at risk when the first-level approval is complete,

but the second-level approval is pending. Follow the same

steps as earlier to create this custom sub-status under At

Risk, which will look like Figure 19.12.

Figure 19.12 Defining More Sub-Statuses

19.1.8 Configure Performance Indicators

The performance indicators give the business users a

holistic view of the process and enables them to understand

process performance at a glance. It shows the health of the

process grouped by these performance indicators. Each of

the indicators are represented by a card in the visibility

dashboard.

There are a few performance indicators that come out of the

box with process visibility. Additionally, you can configure

more per requirement. Here’s an example to show how such

custom performance indicators can be created:

1. Choose the Performance Indicators tab, as shown in

Figure 19.13.

Figure 19.13 Configure Custom Performance Indicators

2. Choose + to add a performance indicator.

3. In the Add Performance Indicators dialog box,

provide a Title, Sub-Title , and ID for the performance

indicator.

4. In the General section, select one of the options from

Table 19.4 in the Representation dropdown list to

decide how to display the performance indicators in the

Process Workspace app. While the table shows the

various options available for representation, you have

options to measure the selected indicator by attributes

available at the instance, phase, step, or entity level.

These options are available in the Level dropdown.

Representation Description

Header Shows the title, subtitle,

aggregated value of the selected

indicator.

List Shows the title, subtitle, and

aggregated value of the selected

indicator in the header area. It also

shows the indicator grouped by the

selected dimension in the chart

area.

Bar Chart Besides showing the title, subtitle,

and aggregated value of the

selected indicator in the header

area, it shows the indicator grouped

by the selected dimension in the

chart area.

Donut Chart Information is represented in the

same way as the bar chart with the

only difference being the type.

Representation Description

Column Chart Information is represented in the

same way as the bar and donut

chart, but the representation is

through column chart.

Line Chart Information is represented in the

same way as bar and donut chart,

but the representation is through a

line chart.

Tables Title and subtitle are shown in the

header area with the list of records

showing the selected attributes.

Table 19.4 List of Representation Options

5. Under the Data section, because you want to measure

the number of disputes, select Number of Instances

as Measure, and select SubStatus for Dimension.

19.1.9 Release the Project

Now that you’re ready with the process visibility scenario,

follow these steps to release it:

1. Click the Release button at the top-right corner of the

screen, as shown in Figure 19.14 .

2. When the Release Project popup appears, select the

appropriate Version radio button and the relevant

version-specific comments.

1

3. Click on the Release button at the bottom of the popup

screen . This will release the project along with the

visibility scenario and make it ready for deployment .

Figure 19.14 Releasing the SAP Build Process Automation Project

Note

Each version of a project is independent and has its own

lifecycle status as follows:

Editable

This is the default status when a project is created. An

editable project is considered a draft and doesn’t

appear in the list of projects in the lobby.

Released

Denotes that the project is ready to deploy. For already-

2

3

released projects, it needs to be released again to

create a new project version. You can delete a released

project.

Deployed

A project can only be run when it’s deployed.

The lifecycle status of a project can be reset to its

previous status. To delete a project, it must be in

Released status. You can’t delete a Deployed project.

Version Control

Following are a few notes about the Version Number

field:

Contains only patches

Used mainly for bug fixes denoted by the number after

the second decimal, for example, 1.0.1.

Contains minor changes

Used for minor changes and bug fixes denoted by the

number after the first decimal, for example, 1.1.0.

Contains significant changes that may impact

dependent projects

Used when there are major changes that may lead to

incompatibility between versions and impact other

projects. This is denoted by the first number, for

example, 2.0.0.

19.1.10 Deploy the Project

Now that the project is in Released status, the next step is

to deploy the project as shown in Figure 19.15:

1. Click on the Deploy button at the top-right corner of the

screen. In the popup window that appears, click on the

Next button at the bottom-right corner.

Figure 19.15 Deploy Project: Step 1 and Step 2

2. Under Runtime Variables, you can choose the Set

new value option or Use existing value option. This

attribute decides the SAP BTP destination for the SAP

Build Process Automation project.

3. If you choose the Use existing value option, as shown

in Figure 19.16, you can choose your target SAP BTP

destination from the destination dropdown list.

Figure 19.16 Deploy Project: Step 3

4. The final step is to select the trigger, and click on the

Deploy button, as shown in Figure 19.17.

Figure 19.17 Deploy Project: The Final Step

Once the project is successfully deployed, the status at the

top will be changed to Deployed, as shown in Figure 19.18.

Figure 19.18 Project Status Post: Successful Deployment

19.2 Testing the Process Visibility

Scenario

Now that the project is successfully deployed, let’s test the

visibility scenario. There are different ways to launch a

process visibility scenario. For this purpose, you need to

follow these steps:

1. Open the SAP Build lobby, and click on the Monitor

option at the top, as shown in Figure 19.19 .

2. Click on the Visibility Scenarios tile or in the left

navigation pane.

3. In the Visibility Scenario screen, identify the desired

visibility scenario from the list. You can use the search

option to quickly find the scenario that you want to

open, as shown in Figure 19.19 .

4. You may need to click on it to see the details such as

activation date, version, and so on to identify the correct

one.

5. Click on the Navigate to Dashboard button at the

top right corner.

1

2

3

Figure 19.19 Launching the Visibility Dashboard: Steps 1 and 2

Finally, the process visibility dashboard is launched, as

shown in Figure 19.20. You can see the sub-status that you

defined earlier to measure disputes by sub-status.

Figure 19.20 Process Visibility Scenario: Launched

Note

Each tile in this dashboard is interactive. Clicking on them

shows the details about the objects under consideration.

The Standard tab at the top of the screen is for fine-

grained search.

19.3 Process Monitoring and Real-

Time Insights

Now that you have some idea about the interactive feature,

let’s explore it further. If you want to see the details of the

disputes that are stuck at the second-level approval, you

need to click on the Open Instances tile. This will take you

to the detail view of those disputes, as shown in

Figure 19.21.

You can drill down further to see when the second-level

approval was given and how much time it took to get it, as

shown in Figure 19.22. All this information can play an

important role in improving the business process being

measured through the process visibility scenario.

From the example used here, it may look like process

visibility can only cover SAP systems. However, process

visibility can be very effective in gaining end-to-end process

visibility across heterogeneous landscapes.

Figure 19.21 First-Level Drilldown Feature in the Process Visibility Dashboard

Figure 19.22 Second-level Drilldown Feature in the Process Visibility

Dashboard

19.4 Add Workflow Actions to the

Dashboard

It’s possible to trigger certain actions based on the

situations in the processes for which a visibility scenario is

created. Trigger workflow is the feature through which this

can be achieved by following these steps (see Figure 19.23):

1. Open the visibility scenario, and go to the Actions tab.

2. Click on the + sign .

3. Once the popup window appears, enter a name in the

Name field . The ID field automatically populates .

There are two types of action possible as available in the

Type dropdown , as shown in Table 19.5.

Action Type Description

Navigational If you want a web application to be

opened for further reference/action to

respond to a specific situation in the

process, this option can be used to

give the user the option to open it from

the visibility dashboard.

1

2 3

4

Action Type Description

Trigger

Workflow

If you want a separate workflow to be

triggered by the user or system, this

option needs to be used. Note that as

of now, this only supports workflows

created in SAP Business Application

Studio and deployed in the now

deprecated SAP Workflow Management

service in SAP BTP.

Table 19.5 Action Types Available

4. Select one of the following options from the Sentiment

field , which determines the appearance of the action

in the visibility dashboard:

Neutral: Provides a neutral appearance while

providing the navigation link/workflow trigger button.

Positive: Provides a positive appearance while

providing the navigation link/workflow trigger button.

Negative: Provides a negative appearance while

providing the navigation link/workflow trigger button.

5. Click OK .

5

6

Figure 19.23 Adding Action into the Visibility Scenario

Now that the action is added, let’s define the condition

based on which this action will be triggered (see

Figure 19.24):

 Click on the + sign under Condition.

 Select the Attribute from the list of all attributes

available for the visibility scenario that you defined

earlier. Here you want the action to be triggered when

the process instances are suspended for some reason,

so, you choose Status in the Attribute field.

 Select the Operator. The only two options are equal

to and not equal to, which are self-explanatory.

Choose equal to.

 Select Value of the sub-status that you want the

action to be triggered. Among all the sub-statuses

available to this visibility scenario, choose Process

Suspended for our objective.

 Click on the OK button to complete defining the

condition.

1

2

3

4

5

Figure 19.24 Adding a Condition for the Action

Note

Had you chosen the Navigational type of action, you

would have to fill in the following two fields:

Environment Variable

This points to a relative path to another application.

Path

If you have a fixed URL that needs to be opened as

corrective action, you don’t need any value in the

Environment Variable field.

Here, you’re using the other type of action, Trigger

Workflow, by following these steps and shown in

Figure 19.25:

 Tigger Type

There are two options available in this dropdown field:

User and System. You choose User because you

want to give the user an option to trigger this action

from the visibility screen. If you want an automatic

trigger, you have to choose the System option.

 Environment Variable

The environment variable can be of the type

Destination which needs to be created in the

business process project. This is a very important

prerequisite for the Trigger Workflow type of action.

Certain additional parameters need to be added while

configuring this destination. The same is explained

nicely in the SAP Help document (see http://s-

prs.co/v569702). This same destination needs to be

chosen during deployment of the project, as shown in

step 2 (Runtime Variables) of Figure 19.26.

1

2

http://s-prs.co/v569702

 Workflow Definition

All the workflows developed in SAP Business

Application Studio and deployed in the SAP BTP

subaccount are visible in this dropdown field. For this

purpose, use the DisputeApprovalWorkflow that

was already deployed. This workflow triggers an email

based on values passed through the context.

Figure 19.25 Add Action Workflow to Visibility

 Start Context

You need pass on the value through this field to our

target DisputeApprovalWorkflow that will be

triggered by the user per the condition you set earlier

(refer to Figure 19.24).

Finally, you save these configurations by clicking on the

Save button at the top-right corner of the screen. Because

you made all these changes, you must release and deploy

the business process project again following the steps

3

4

shown in Figure 19.14. While there is no change in the

release process in general, deployment of the project needs

the additional BPARuntime destination, as shown in

Figure 19.26.

Figure 19.26 Deployment of the Project after Configuring the Action to

Trigger Workflow

Now, let’s see the effect of this Trigger Workflow action.

For this, launch the visibility scenario for the process, as

shown in Figure 19.27.

Because you defined the condition to trigger the workflow

for the process instances where the status is At Risk, click

on the At Risk section of the Open Instances tile in the

visibility dashboard, as shown in Figure 19.27 . It will

navigate to the detail screen.

1

Figure 19.27 Testing Trigger Workflow Action: Steps 1 and 2

In the detail screen, click on the record . This will navigate

to the next level of detail, as shown in Figure 19.28 and

Figure 19.29. On clicking any of the records in the left-hand

pane , the right-hand side of the screen will show further

details. On the top-right part of the screen, the Take Action

button appears, showing the action workflow that you

configured previously. Before you click on this button to

trigger the workflow action, let’s go to the Action Logs tab

in Figure 19.28 .

If you click the Take Action button in Figure 19.29, the

DisputeApprovalWorkflow gets triggered, and a record will

appear in the action logs list .

2

3

4

5

6

Figure 19.28 Testing Trigger Workflow Action: Steps 3 and 4

Figure 19.29 Testing Trigger Workflow Action: Steps 5 and 6

19.5 Using Application Programming Interfaces for

Process Visibility

The Process Monitoring dashboard is a key component of the process visibility service.

What this dashboard offers is configurable to a large extent, it’s limited by the look and

feel, that is, the UI aspects. To address this, SAP has provided a whole bunch of APIs with

which you can deploy a new visibility scenario, push events to the scenario, and get details

of the process scenario instances. A complete custom dashboard can also be developed

using these APIs.

There are two types of APIs available for process visibility: OData-based APIs and REST-

based APIs. As is common for any API-based communication, authentication is required to

use these APIs. Currently, OAuth2 type of authentication is supported.

SAP Business Accelerator Hub provides the complete list of these APIs, but here are some

of the most useful ones:

OData-based APIs

The OData-based API exposes scenario instance information to gain visibility on end-to-

end processes, as shown in Table 19.6.

API Description Roles Require

/odata/v1/metadata/Scenarios Retrieves

metadata of

scenarios

that can be

accessed by

the user

PVOperator,

PVRestrictedOper

/odata/v1/{scenarioId}/Instances('{scenarioInstanceId}') Retrieves

scenario

instance

details for

the scenario

instance ID

PVOperator,

PVRestrictedOper

/odata/v1/{scenarioId}/Instances('{scenarioInstanceId}')/Phases Retrieves

phase

details of a

scenario

PVRestrictedOper

Table 19.6 Useful OData APIs for Process Visibility

REST-based APIs

The REST-based APIs help list and manage scenario definitions, as shown in Table 19.7.

API Description Roles Required

API Description Roles Required

/rest/v1/scenario-

definitions/{scenarioId}/data-

executions

Triggers process execution for the

scenario ID for which input is given

here

PVAdmin

/rest/v1/scenario-

definitions/{scenarioId}/data-

executions

Fetches 20 of the most recent

process data execution logs for the

given scenario ID

PVAdmin

/rest/v1/data-

acquisition/error-messages

Fetches the error messages that

occurred during data acquisition

PVRestrictedOperator

Table 19.7 Useful REST APIs for Process Visibility

19.6 Summary

The process visibility component of SAP BTP offers a real-

time end-to-end visibility of a running process irrespective

of whether they are running in and/or out of SAP backend

systems. This is an important component in the former SAP

Workflow Management service and now the new SAP Build

Process Automation. More than one process can be

monitored through this service. This is a no-code tool

through which certain statuses and sub-statuses of a

process instance can be configured. The process monitoring

dashboard is the most interesting component of the process

visibility service. It provides an out-of-the-box dashboard

with meaningful graphs and charts to show the health of a

business process. Besides the out-of-the-box performance

indicators, several custom performance indicators can be

configured. It also provides many APIs, using which all the

information that is available to the out-of-the-box monitoring

dashboard can be made available to the external world.

Using these APIs, you can develop a completely custom

monitoring dashboard per requirement. In summary, we can

say that the process visibility service is one of the most

interesting and useful components of SAP BTP.

20 Task Processing with My

Inbox

Now that you’ve seen how to design and deploy a

workflow, we need to look at how to get the user task

assigned to a given user and how the user can

access it. You already learned that the user task gets

assigned to the My Inbox app. In this chapter, we’ll

see how to process the task using My Inbox and the

various options available in on-premise and SAP

Business Technology Platform (SAP BTP).

You’ve learned about the various flavors of workflows for

SAP S/4HANA and about the options available in SAP BTP.

You also saw that each workflow option has a critical task

called the user task. As you know, one of the major tasks in

a workflow is the approval task. In most cases, a workflow

will have one or more user tasks where one user (or a set of

users) needs to take an action to approve or reject a

particular set of data before it gets processed further, such

as purchase requisition and purchase order approval in the

source-to-pay process, leave approval in the HR process,

and so on. All these user tasks need to present the set of

data in a screen and give the option for the user to approve

or reject, and the data needs to be processed according to

the decision. My Inbox is the app that lets you do this

activity in a workflow.

As you know, workflows can be designed either in SAP

S/4HANA or SAP BTP. My Inbox also comes with respective

options for SAP S/4HANA and for SAP BTP. We’ll look at the

app for SAP BTP in the following sections and discuss the

SAP Task Center, which is the latest offering from SAP to

combine multiple inboxes into a universal inbox.

Note

My Inbox has been discussed at length in earlier chapters

of the book. To get an overview of the on-premise version

of My Inbox, check out Chapter 11, Section 11.1. To see

how to set up scenarios and implement visualizations, see

Chapter 11, Section 11.2. To learn more about

substitutions in My Inbox, see Chapter 8, Section 8.5.

20.1 My Inbox for SAP Business

Technology Platform

We talked about SAP Build Process Automation and SAP

Workflow Management in previous chapters. There we came

across a user task similar to on-premise workflows in which

the user needs to take decisive action on a workflow

instance to approve or reject a request or take another

action depending on the requirement. This is done using an

SAP Fiori app called My Inbox, but SAP BTP uses a different

app than the on-premise one. All of our on-premise

workflows use the on-premise version of My Inbox, but all

the SAP BTP–based workflows, whether SAP Build Process

Automation or SAP Workflow Management, use My Inbox on

SAP BTP. Let’s delve into the configuration and set up of the

SAP BTP version of My Inbox.

20.1.1 Standard App in SAP Build Process

Automation

In our SAP Build Process Automation example build, we

created three levels of approvals. All of these approval steps

are either an approval form in SAP Build Process Automation

or a user task in a workflow based on SAP Workflow

Management.

The My Inbox app is available from the Lobby screen of the

SAP Build Process Automation service, as shown in

Figure 20.1. This can be used for testing purposes.

Figure 20.1 My Inbox Link in the Lobby of SAP Build Process Automation

The My Inbox in SAP BTP offers all the features explained

previously in Chapter 11, Section 11.1 and Section 11.2, and

in Chapter 8, Section 8.5, including substitutions. You can

view/hide the workflow logs, claim/release the work item,

and so on.

In Figure 20.2, you can see what the My Inbox looks like. You

can see the list of tasks in the left-hand side, which gives

the key details of the task. Clicking on the task provides a

detailed view with various actions you can take on this task,

such as Approve or Reject.

Figure 20.2 My Inbox in SAP BTP

20.1.2 Configure My Inbox in SAP Build Work

Zone

Although the My Inbox application is accessible from the

Lobby screen of SAP Build Process Automation, this

shouldn’t be where an end user accesses My Inbox. The user

should use the SAP Build Work Zone launchpad where a My

Inbox tile appears just like for the on-premise version. Let’s

see how this is achieved.

Make sure you have proper authorization as an SAP Build

Work Zone launchpad content manager. The My Inbox

application is available as part of the HTML5 application

repository, and this can be used to configure your content in

an SAP Build Work Zone launchpad site that you’ve created.

Similar to creating any new tile in your site, you can create

a new tile using the My Inbox application.

From the Content Manager • Content Explorer section of

your SAP Build Work Zone site, select My Inbox, and then

click Add to add it your contents, as shown in Figure 20.3.

Now the My Inbox app is available in your Content

Manager screen, as shown in Figure 20.4.

From here onward, follow the standard steps to create a

catalog group, and assign this app to the catalog.

Figure 20.3 Adding the My Inbox App to the Contents of Your Site

Figure 20.4 My Inbox App Now Available in Content Manager

Note

To create the catalogs, groups, spaces, and pages, refer to

the standard documentation for SAP Build Work Zone

launchpad configuration.

Later to a role and once this role is assigned to the end user,

My Inbox will be available for the user in the launchpad.

Here, the user can use substitutions from the User Action

menu of the launchpad just as with the on-premise

launchpad.

Figure 20.5 shows the My Inbox tile as it appears for the

user in the SAP Build Work Zone launchpad with the count of

task items assigned to the user.

Figure 20.5 My Inbox Made Available in the Launchpad

To set substitutions, navigate to the User • Settings •

Manage My Substitutes, as shown in Figure 20.6.

Figure 20.6 My Inbox User Action Menu Option: Manage My Substitutes

A substitute can be set in the Manage My Substitutes app by

entering the SAP BTP user ID for a particular user and

setting a time frame for this substitution to be in effect, as

shown in Figure 20.7.

Note

The Manage My Substitutes app doesn’t provide the

option to search and assign the user as compared to on-

premise My Inbox. You need to either enter it manually or

copy and paste the SAP BTP user ID of the user or from

the user profile details.

Figure 20.7 Adding a Substitute

You can also view whom you’re substituting for from the

Substitute For app in the User Action menu.

In the My Inbox app, there are some important configuration

parameters to be aware of. Most importantly, if you need to

enable substitutions, you have to set the parameter

substitution to true. Various parameters that you can set are

shown in Figure 20.8.

Note

Unlike the on-premise version of My Inbox, there is no

such option to set various visualizations for the My Inbox

details page. You can use the approval form control in SAP

Build Process Automation and either as a simple form or a

custom SAPUI5 application in a workflow based on SAP

Business Application Studio. One thing to ensure is that

the UI modules you develop in SAP Business Application

Studio are deployed with a managed AppRouter, instead

of standalone AppRouter, for it to be used in the My Inbox

app in the SAP Build Work Zone launchpad.

Under the Navigation tab, of the My Inbox app in the

Content Manager screen, the following parameters can be

set that affect the behavior of the app at runtime:

listSize

This takes a numeric value that represents the number of

tasks to be listed in the My Inbox app.

expertMode

This parameter enables the expert view in My Inbox

(true/false).

userSearch

This parameter enables user search for both substitutions

and forward functionalities (true/false).

Substitution

This parameter is used to make the Manage My

Substitutes app available for users (true/false).

showAdditionalAttributes

This parameter lets you use and display customer-specific

attributes related to business content (true/false).

showLog

This parameter enables the Show/Hide Log button

(true/false).

enablePaging/pageSize

The enablePaging parameter enables pagination in the

Master view (true/false), and pageSize sets the limit.

Figure 20.8 My Inbox Parameters

20.2 SAP Task Center

To get approval items into an inbox, SAP has two inbox applications:

My Inbox app in SAP S/4HANA

This app is the single source of all approval items generated from SAP S/4HANA standard

or custom workflows.

My Inbox on SAP BTP

This out-of-the-box application comes with the SAP Build Process Automation service. All

the workflow approvals generated from this service are shown to this inbox application.

As you can see, to approve, a user needs to open two inbox apps, which isn’t a very

friendly solution from a usability perspective. SAP solved this problem with the introduction

of a new service in SAP BTP called SAP Task Center. The SAP Task Center service is a single

point of entry for all kinds of approvals from SAP products.

As of now, the SAP Task Center service fully supports on-premise SAP S/4HANA; SAP

S/4HANA Cloud, public edition; SAP S/4HANA Cloud, private edition; and SAP Build Process

Automation. All approvals from SAP S/4HANA and SAP Build Process Automation will be

pushed to one single place for approval, and approvers will see all approvals in one single

place—SAP Task Center. This service also supports SAP products such as SAP Ariba, SAP

Fieldglass, and so on. Table 20.1 shows the list of SAP products that support approval

workflow integration with SAP Task Center. As of now, there is no way to integrate third-

party product tasks into SAP Task Center. However, from Q4 2023, SAP has plans to expose

the API to integrate third-party product tasks as well per the SAP road map of SAP Task

Center.

Products Support Type

SAP Ariba No types of approvals

SAP Cloud for Customer No types of approvals

SAP Concur No types of approvals

SAP Fieldglass No types of approvals

SAP Marketing Cloud No types of approvals

SAP Build Process Automation All types of approvals

SAP S/4HANA All types of approvals

SAP S/4HANA Cloud, public edition All types of approvals

SAP S/4HANA Cloud, private edition All types of approvals

SAP SuccessFactors No types of approvals

Table 20.1 Product Support for the Approval Workflow in SAP Task Center

SAP Task Center by default isn’t available as a service in SAP BTP subaccounts. You need to

add this service to your subaccount and then configure the service to make it work. This

service runs from both web and mobile. It’s recommended to configure the service via a

booster. If you use a booster, during the creation of the service, all the destinations (e.g., in

SAP Build Process Automation; SAP S/4HANA; SAP Build Work Zone, standard edition; etc.)

will be created in your subaccount. You can add this service to your SAP Build Work Zone,

standard edition launchpad to make it available to users based on their authorization. The

SAP Mobile Start app also supports SAP Task Center.

When you run the booster for SAP Task Center to setup, you’ll have three options:

Set up an account for SAP Task Center with SAP Build Work Zone, standard edition.

Set up an account for SAP Task Center with SAP Build Work Zone, advanced edition.

Set up an account for SAP Task Center with SAP SuccessFactors Work Zone.

We’re setting up here with SAP Build Work Zone, standard edition.

Now, let’s discuss how you can integrate SAP Task Center with SAP Build Process

Automation. Because we choose to use SAP Build Work Zone, standard edition, SAP Task

Center will be available in our launchpad.

As we followed the booster approach to create SAP Task Center, a destination called

“SAPBuildPA” is created. Now we need to copy that destination and create another

destination that will push workflow approval tasks to SAP Task Center. It’s assumed that

you’ve already configured Identity Authentication via Security • Trust Configuration in

SAP BTP.

Let’s look at the steps to create a destination for SAP Build Process Automation to establish

a connection with SAP Task Center when SAP Task Center and SAP Build Process

Automation services are running from the same subaccount.

For creating a destination, you can either navigate to the SAP BTP cockpit and choose

Subaccount • Destinations, or from the SAP Build Process automation Lobby, choose

Settings • Destinations. Once here, click on Open in the SAP BTP cockpit and then add

the information shown in Table 20.2.

Property Instruction

Name Name of the destination per the customer’s naming convention

Type HTTP

Description (Optional)

URL Endpoint URL of key created from taking the instance of SAP Build

Automation and then appending “/internal/workflow/rest/v1” to th

Proxy Type Internet

Authentication OAuth2SAMLBearerAssertion

Audience “<https://<subaccount>.authentication.eu<server_number>.han

AuthnContextClassRef “urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession”

Client Key The clientid from SAP Build Process Automation key.

Property Instruction

Token Service URL

Type

Dedicated

Token Service URL URL from the SAP Build Process Automation key with appended “/

Token Service User clientid from the SAP Build Process Automation key

Token Service

Password

clientSecret from the SAP Build Process Automation key

Table 20.2 Destination Properties to Be Configured For SAP Task Center

Now add additional properties with the details listed in Table 20.3.

Property Instruction

nameIdFormat Security Assertion Markup Language (SAML) name identifier formats

such as user ID, email address, and so on.

Value will be like the following:

“urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress”

tc.enabled True (this property will enable the SAP Build Process Automation

destination to be used in SAP Task Center)

tc.provider_type SPA (to enable the Filter tab in SAP Task Center for SAP Build

Process Automation approval tasks)

tc.ui.group

and

tc.ui.group.

[language_code]

Optional property for language groups

tc.ui.label

and

tc.ui.label.

[language_code]

Optional property used for adding language-specific labels

Table 20.3 Additional Properties to Be Configured for SAP Task Center Destination

Once the destination is created, it will look like Figure 20.9.

Figure 20.9 Destination Setup for SAP Build Process Automation with SAP Task Center

You can also set up the destination with a remote subaccount (i.e., if your SAP Task Center

is running from a separate subaccount than SAP Business Process Automation). In that

case, you need to clone destination “SAPBuildPA_rem”, set up principal propagation

between two subaccounts, and set up user propagation between Cloud Foundry

applications.

Some restrictions while using SAP Task Center for SAP Build Process Automation approval

tasks are as follows:

Don’t create two destinations of SAP Build Process Automation for one SAP Task Center

because this can cause duplication of tasks.

The default Identity Authentication service, which is provided by SAP, won’t work, so a

customer-specific identity provider must be set up in the subaccount.

SAP Task Center will show the task, but task processing will take place inside the SAP

Build Process Automation UI inbox, which means the SAP Build Process Automation

service inbox app is also needed.

20.3 Summary

Where there is a workflow, no matter whether it’s on-

premise or in the cloud, you can anticipate an intervention

task. A visualization must be made available for the user

with a proper and intuitive UI. This is achieved using the My

Inbox app, which is a kind of universal app for approval, as

well as other user-intervention scenarios. In this chapter,

you saw the options for on-premise workflows and SAP BTP–

based workflows, including how to configure them and use

them to their full potential in both flavors. In addition, you

learned about SAP Task Center, which is SAP’s universal

inbox connecting not just an SAP S/4HANA system but other

SAP on-premises and cloud products.

A The Authors

Sabyasachi Dutta is a senior SAP application architect and

consultant with more than 17 years of experience in the SAP

technical domain. At IBM, he is a product lead for ABAP. He

served in various technical roles in end-to-end SAP

implementation projects for global clients from a number of

different industries. Sabyasachi has played a key role in

building the SAP HANA technical competency at CIC India.

He is also highly involved in developing different technical

assets, providing training, and establishing process,

methods, and tools for SAP technical delivery. To do so, he

uses his knowledge of the code review process, ABAP, SAP

BTP, the ABAP programming model for SAP Fiori, the ABAP

RESTful application programming model, in-app extensions,

workflows, DevOps, and generative AI. Sabyasachi can be

reached at www.linkedin.com/in/sabyasachi-dutta-s4arch.

http://www.linkedin.com/in/sabyasachi-dutta-s4arch

Nilay Ghosh is a globally acknowledged technical leader

for the SAP practice at IBM Consulting. He has more than 20

years of experience working with SAP’s technology stack,

including SAP ERP, SAP S/4HANA, SAP BTP, and other on-

premise and cloud products. He has had several technical

leadership roles at IBM for both global client projects and

internal strategic programs. He also set up the SAP eSOA,

SAP UX/mobile, and SAP BTP practices at IBM’s largest

global delivery center in India. In addition to being a lead

architect for the global SAP S/4HANA transformation

program, Nilay is currently the chief architect for all the

intelligent workflows developed under the strategic

Evolution Program between SAP and IBM. A core member of

IBM’s SAP Global CTO Network, and a frequent speaker with

a few patents to his name, he can be reached at

www.linkedin.com/in/nilay-ghosh/.

http://www.linkedin.com/in/nilay-ghosh/

Kousik Goon is a globally acknowledged technical leader in

the SAP practice at IBM Consulting. He has more than 18

years of experience working in SAP’s technology stack,

including SAP ERP, SAP S/4HANA, SAP BTP, and other on-

premise and cloud products. He has held several technical

leadership roles in IBM—both for global client projects and

internal strategic programs. He was instrumental in setting

up the SAP UX/mobile and SAP BTP practices at IBM’s

largest global delivery center in India. In addition to his role

as an integration/extension architect for a global SAP

S/4HANA transformation program, Kousik is the key SME at

IBM Consulting for SAP S/4HANA extensions and integration.

A core member of IBM’s SAP Global CTO Network, and a

frequent speaker, he can be reached at

www.linkedin.com/in/kousikgoon.

http://www.linkedin.com/in/kousikgoon

Sandip Jana is a global technical leader for the SAP

practice area at IBM Consulting. He has more than 22 years

of experience with enterprise architecture, system

landscape design, and simplifications for different SAP

technology platforms, both on-premise and in the cloud. He

has led different IBM strategic offerings helping customers

to embark on their SAP S/4HANA journey. He has been the

lead architect for global SAP transformation projects. Sandip

is currently leading the SAP technical practice at the IBM

global delivery center in India and is responsible for building

capabilities in new technical areas. He leads IBM’s SAP

HANA impact assessment that guides customers on their

SAP S/4HANA transformation journey. He also leads IBM’s

global SAP S/4HANA transformation offering: IBM Rapid

Move. A core member of IBM’s SAP Global CTO Network, and

a frequent speaker, he can be reached at

www.linkedin.com/in/sandip-jana.

Arindam Mukherjee is a senior technical architect and

consultant who has worked for IBM for more than 17 years,

specializing in SAP Business Workflow, ABAP, ABAP on SAP

HANA, OData, and SAP S/4HANA embedded analytics.

Arindam is an established subject matter expert in the SAP

Business Workflow space, implementing workflow solutions

http://www.linkedin.com/in/sandip-jana

for several global SAP customers as well as driving the

growth of workflow competency and the knowledge base

content for classical workflows at IBM. Arindam has also

expanded his skills to include flexible workflows with SAP

S/4HANA, SAP Fiori, and OData integration and has led

multiple SAP S/4HANA implementations by engaging in end-

to-end solution design, development, and support.

Srinivas Rao is an application architect for the SAP practice

at IBM with more than 16 years of consulting experience. He

is passionate about clean core solutions and has extensive

expertise with them. He has the SAP certifications for SAP

Cloud Platform extensions and SAP Cloud Platform

integration. He has extensive experience in delivering

complex SAP S/4HANA implementations projects with varied

experience in building and delivering solutions. He is also

passionate about automation and was the winner of one of

the SAP Workflow Management Hack2Build events. He can

be reached at www.linkedin.com/in/srinivas-rao-58275311/.

http://www.linkedin.com/in/srinivas-rao-58275311/

Yogeendar Rao is a senior SAP S/4HANA technical

consultant working for IBM India. He has more than 10 years

of global SAP consulting experience, with expertise in ABAP

on SAP HANA, SAP Business Workflow, flexible workflows,

OData, and SAP Conversational AI. He has worked on

enterprise digital transformations and delivered technical

use cases for global SAP customers using his proficiency in

ABAP on SAP HANA and SAP Business Workflow. He has

mastered flexible workflows and their integration with SAP

Fiori apps, doing work on solutioning, designing, and

extending the flexible workflows in many SAP S/4HANA

implementations. Yogeendar can be reached at

www.linkedin.com/in/yogeendar-rao/.

Yogesh Sane is a subject matter expert and a senior

consultant at IBM with more than 20 years of experience in

http://www.linkedin.com/in/yogeendar-rao/

implementing SAP solutions, including SAP R/3, SAP ERP,

SAP S/4HANA, and SAP BTP for clients in multiple regions

and industries. Yogesh leads the master data governance

delivery center at IBM India and has implemented SAP

Master Data Governance for a number of clients. He set up

an internal training program on SAP Master Data

Governance and has trained hundreds of SAP consultants.

He has also set up a center of excellence to perform design

reviews and troubleshoot implementation issues for SAP

MDG implementation projects delivered by IBM. Yogesh has

created several assets to benefit clients by harnessing the

experience and knowledge of the entire SAP MDG practice.

Naveen Veshala is a senior SAP application architect and

consultant with more than 20 years of experience in the SAP

technical domain. He was worked for IBM for close to 18

years, specializing in SAP S/4HANA, SAP Gateway, SAP Fiori,

flexible workflows, ABAP, and SAP ERP. Naveen is an

established subject matter expert within IBM’s SAP practice

where his main focus is SAP S/4HANA, flexible workflows,

and OData. He also contributed to SAP Community and

published blogs on flexible workflows. He has led multiple

SAP S/4HANA implementations by engaging in end-to-end

solution design, development, and support. Naveen can be

reached at www.linkedin.com/in/naveenveshala.

Kiran Viswanathan is a technical architect and senior

consultant with more than 21 years of extensive experience

in SAP user experience, mobility, SAP BTP, orchestration,

and integration. He has experience as a user experience

and extensibility solution consultant and as a technical

delivery manager for multiple clients across numerous

industries for their SAP S/4HANA implementations. He also

leads and manages the SAP UX, mobility, and SAP BTP

practice area for the IBM India global delivery center.

Additionally, he is an architect and realization lead in IBM’s

strategic Evolution Program for developing intelligent

workflows for several industry use cases. He can be reached

at www.linkedin.com/in/kiran-viswanathan/.

http://www.linkedin.com/in/naveenveshala
http://www.linkedin.com/in/kiran-viswanathan/

Index

↓A ↓B ↓C ↓D ↓E ↓F ↓G ↓I ↓J ↓K ↓L ↓M ↓N ↓O

 ↓P ↓Q ↓R ↓S ↓T ↓U ↓V ↓W

_Attach_Objects [→ Section 3.3]

_EVT_OBJECT [→ Section 5.1]

_Wi_Actual_Agent [→ Section 3.3] [→ Section 6.1]

_Wi_Object_ID [→ Section 3.3]

A ⇑

ABAP CDS views [→ Section 15.2]

ABAP classes [→ Section 3.2]

test [→ Section 3.2]

ABAP Test Cockpit [→ Section 12.2]

Actions [→ Section 18.3] [→ Section 19.4]

configure [→ Section 18.3]

Active area [→ Section 13.1]

Active monitoring [→ Section 9.2]

Activities [→ Section 4.2] [→ Section 15.3]

ACTOR_TAB [→ Section 6.2]

Actual agents [→ Section 6.1]

Ad hoc anchor [→ Section 4.2]

Adaptation transport organizer (ATO) [→ Section 16.1]

Administration [→ Section 8.2]

documentation [→ Section 8.2]

key activities [→ Section 8.2]

Agent assignment error [→ Section 8.3]

Agent determination [→ Section 1.1] [→ Section 6.1]

[→ Section 13.1] [→ Section 15.3] [→ Section 15.7]

rule-based workflow [→ Section 13.1]

rules [→ Section 6.2]

standard workflow [→ Section 13.1]

with function module [→ Section 6.2]

with organization data [→ Section 6.2]

with responsibilities [→ Section 6.2]

Agent rules [→ Section 15.3] [→ Section 15.3]

[→ Section 15.4] [→ Section 15.7]

Agent types [→ Section 6.3]

Agents [→ Section 2.5] [→ Section 4.3] [→ Section 8.1]

[→ Section 15.7]

API call [→ Section 3.1]

APIs [→ Section 18.7] [→ Section 19.5]

for decisions [→ Section 18.7]

for workflows [→ Section 9.4] [→ Section 18.7]

My Inbox [→ Section 18.7]

Application errors [→ Section 3.1]

Application Link Enabling (ALE) [→ Section 5.1]

[→ Section 9.1]

AppRouter [→ Appendix Note]

Approval forms [→ Section 18.3] [→ Section 18.8]

[→ Section 18.8]

ArchiveLink [→ Section 8.8] [→ Section 8.8]

configuration [→ Section 8.8]

Attributes [→ Section 3.1] [→ Section 15.1]

create [→ Section 3.1]

define key ones [→ Section 3.2]

Authentication [→ Section 18.5]

Automatic forwarding [→ Section 8.5]

Automation tasks [→ Section 18.3]

B ⇑

Background activity [→ Section 15.3]

Background tasks [→ Section 13.1]

BAdI [→ Section 15.3] [→ Section 15.3] [→ Section 15.5]

BI_EVENT_HANDLER_STATIC [→ Section 5.2]

BI_OBJECT [→ Section 3.2]

BI_PERSISTENT [→ Section 3.2]

Binding editor [→ Section 3.3]

Bindings [→ Section 4.4] [→ Section 6.2]

custom transformations [→ Section 4.4]

definition [→ Section 4.4]

Boundary escalation event [→ Section 18.2]

Boundary timer event [→ Section 18.2]

Branches [→ Section 18.3] [→ Section 18.8]

BRFplus [→ Section 1.1] [→ Section 1.3] [→ Section

10.1] [→ Section 13.1] [→ Section 13.2]

APIs [→ Section 10.1]

application [→ Section 10.1]

application overview [→ Section 10.2]

attach function [→ Section 10.2]

building blocks [→ Section 10.1]

create new task [→ Section 10.2]

data objects [→ Section 10.1]

decision tables [→ Section 10.1]

execute workflow [→ Section 10.2]

expressions [→ Section 10.1]

functions [→ Section 10.1]

layout [→ Section 10.1]

overview [→ Section 10.1]

rule execution engine [→ Section 10.1]

rule modeling [→ Section 10.1]

test workflow [→ Section 10.2]

workbench [→ Section 10.1] [→ Section 10.2]

Brownfield project [→ Section 12.1]

Buffering [→ Section 8.3]

Business Application Programming Interface (BAPI)

[→ Section 3.1]

Business object repository (BOR) [→ Section 1.1]

[→ Section 3.1] [→ Section 5.1]

builder [→ Section 1.3]

events [→ Section 3.1]

object types [→ Section 3.1]

program [→ Section 3.1]

programming [→ Section 3.1] [→ Section 3.1]

test object types [→ Section 3.1]

Business object type definition [→ Section 3.1]

Business objects [→ Section 9.1] [→ Section 15.2]

[→ Section 15.8]

BUS2001 [→ Section 3.1]

BUS2032 [→ Section 3.1]

BUS2054 [→ Section 3.1]

BUS2250 [→ Section 13.1]

Business partners [→ Section 13.2]

change requests [→ Section 13.2]

data model [→ Section 13.2]

workflow templates [→ Section 13.2]

Business rules [→ Section 1.2]

Business rules management system (BRMS) [→ Section

10.1]

Business Workplace [→ Section 8.4] [→ Section 11.1]

attachments [→ Section 8.4]

inbox [→ Section 8.4]

outbox [→ Section 8.4]

toolbar [→ Section 8.4]

work items [→ Section 8.4]

C ⇑

Callback classes [→ Section 15.1] [→ Section 15.1]

[→ Section 15.1] [→ Section 15.3]

Central governance [→ Section 13.1]

Change documents [→ Section 5.1]

Change request actions [→ Section 13.1]

Change request step types [→ Section 13.1]

Change request steps [→ Section 13.1]

Change request types [→ Section 13.1]

Check function module [→ Section 5.2] [→ Section 5.3]

[→ Section 5.5]

CL_SWF_EVT_EVENT [→ Section 5.1]

CL_SWF_FLEX_IFS_DEF_APPL_BASE [→ Section 15.1]

[→ Section 15.3]

CL_SWF_FLEX_IFS_RUN_APPL_BASE [→ Section 15.1]

[→ Section 15.3]

CL_SWF_IFS_WF_CONSTRUCTOR [→ Section 9.6]

CL_SWF_IFS_WF_DESTRUCTOR [→ Section 9.6]

CL_SWH_WORKITEM_EXIT [→ Section 9.6]

Classic technical view [→ Section 8.1]

Classic user view [→ Section 8.1]

Classical workflows [→ Section 1.1] [→ Section 1.1]

[→ Section 1.1] [→ Section 12.2]

activate/deactivate [→ Section 2.4]

commonly-used [→ Section 2.2]

evolution [→ Section 2.1]

search [→ Section 2.2] [→ Section 2.2]

standard [→ Section 2.2]

tools [→ Section 1.3]

trigger [→ Section 1.1]

Classifications [→ Section 8.5]

Condition controls [→ Section 18.3]

Condition editor [→ Section 5.1] [→ Section 9.1]

Condition records [→ Section 5.1]

Conditions [→ Section 3.3] [→ Section 4.2] [→ Section

4.2] [→ Section 4.3] [→ Section 15.3] [→ Section 15.3]

[→ Section 15.3] [→ Section 18.3] [→ Section 18.8]

[→ Section 18.8] [→ Section 18.8]

Configure Software Packages app [→ Section 16.5]

CONSTRUCTOR [→ Section 3.2]

Container element binding [→ Section 4.2]

Containers [→ Section 4.2] [→ Section 4.4]

types [→ Section 4.4]

Context elements [→ Section 15.3]

Controls [→ Section 15.3] [→ Section 18.3]

Create, read, update, and delete (CRUD) [→ Section

13.1]

CREATE_EVENT [→ Section 5.1]

Custom scenarios [→ Section 15.1]

Custom workflows [→ Section 2.6]

CX_BO_ERROR [→ Section 3.2]

CX_BO_TEMPORARY [→ Section 3.2]

D ⇑

Data elements [→ Section 18.8]

Data models [→ Section 13.1]

Data tables [→ Section 9.3]

Database attributes [→ Section 3.1]

Deadline agents [→ Section 6.1]

Deadline monitoring [→ Section 16.3]

Deadlines [→ Section 4.3]

definition [→ Section 4.6]

types [→ Section 4.6]

Decision tables [→ Section 13.1] [→ Section 18.3]

[→ Section 18.8]

nonuser agent [→ Section 13.1]

single-value [→ Section 13.1]

user agent [→ Section 13.1]

Decisions [→ Section 18.3] [→ Section 18.8]

Default rules [→ Section 3.3] [→ Section 6.3]

Delegation [→ Section 3.1]

Design techniques [→ Section 18.1]

Destinations [→ Section 18.5] [→ Section 20.2]

configure [→ Section 18.2]

setup [→ Section 18.5]

variable [→ Section 18.5]

Dialog tasks [→ Section 13.1] [→ Section 13.1]

[→ Section 15.3]

Document from template [→ Section 4.2] [→ Section

4.2]

Document templates [→ Section 4.1]

Dynamic column [→ Section 8.6]

Dynamic labels [→ Section 8.6]

Dynamic parallel processing [→ Section 4.5]

E ⇑

Email notifications [→ Section 7.1]

email IDs [→ Section 7.1]

prerequisites [→ Section 7.1]

program RSWUWFML2 [→ Section 7.2]

set up SAPconnect [→ Section 7.1]

URL links [→ Section 7.4]

Email tasks [→ Section 18.2]

Email templates [→ Section 11.3] [→ Section 15.3]

[→ Section 15.3] [→ Section 15.3] [→ Section 15.3]

[→ Section 15.4] [→ Section 15.7] [→ Section 16.3]

End event [→ Section 18.2]

Entitlements [→ Section 17.4]

Error diagnosis [→ Section 8.3]

Error handling [→ Section 9.1]

Event linkages [→ Section 8.3] [→ Section 9.1]

Event queue [→ Section 8.7]

Event traces [→ Section 8.7]

Event type linkages [→ Section 13.1]

Event-based triggers [→ Section 18.8]

Events [→ Section 1.3] [→ Section 3.1] [→ Section 4.2]

[→ Section 15.1] [→ Section 15.5] [→ Section 15.5]

[→ Section 15.6] [→ Section 18.2]

configuration [→ Section 5.1]

create [→ Section 3.2]

creator [→ Section 5.2]

define [→ Section 5.1]

delivery [→ Section 5.2]

linkage [→ Section 5.2]

parameters [→ Section 3.1] [→ Section 15.1]

receiver [→ Section 5.2]

terminating [→ Section 5.4]

trigger [→ Section 5.1]

trigger via ABAP code [→ Section 5.1]

trigger via message control [→ Section 5.1]

trigger via status management [→ Section 5.1]

triggering techniques [→ Section 5.1]

Exceptions [→ Section 3.1] [→ Section 3.2]

Excluded agents [→ Section 6.1]

Exclusive gateway [→ Section 18.2]

Execution views [→ Section 8.1]

EXIT_CANCELLED [→ Section 3.1]

EXIT_NOT_IMPLEMENTED [→ Section 3.1]

EXIT_OBJECT_NOT_FOUND [→ Section 3.1]

EXIT_PARAMETER_NOT_FOUND [→ Section 3.1]

EXIT_RETURN [→ Section 3.1]

Expressions [→ Section 6.1]

F ⇑

Field restrictions [→ Section 5.1]

Flexible blocks [→ Section 15.3] [→ Section 15.3]

Flexible workflows [→ Section 1.1] [→ Section 1.1]

[→ Section 1.1] [→ Section 12.2] [→ Section 14.1]

activate [→ Section 14.4]

activate scenario [→ Section 14.4]

authorizations [→ Section 14.1]

custom [→ Section 14.2]

customization [→ Section 14.4]

deactivate event type linkage [→ Section 14.4]

define steps and decisions [→ Section 14.4]

extending [→ Section 14.5]

migration [→ Section 14.3]

SAP Help [→ Section 14.4]

scenarios [→ Section 14.2]

set up [→ Section 14.4]

standard [→ Section 14.2]

tools [→ Section 1.3]

visualization metadata [→ Section 14.4]

vs classical workflows [→ Section 14.2]

when to use [→ Section 14.2]

Fork [→ Section 4.2] [→ Section 4.2]

Forms [→ Section 4.2] [→ Section 18.2] [→ Section

18.3]

add decision [→ Section 18.2]

Forward work item [→ Section 8.2]

Forwarding [→ Section 6.3]

G ⇑

Gateways [→ Section 18.2]

get_task_container() [→ Section 15.1]

get_workflow_container() [→ Section 15.1]

Graphical model [→ Section 4.1]

Greenfield implementation [→ Section 12.1]

I ⇑

I_WorkflowTask [→ Section 15.3] [→ Section 15.3]

I_WorkflowTaskApplObject [→ Section 15.3]

Identity and access management [→ Section 1.4]

Identity management [→ Section 17.4]

IDOCAPPL [→ Section 9.1]

IDocs [→ Section 9.1]

handle error [→ Section 9.1] [→ Section 9.1]

monitoring [→ Section 9.2]

processing [→ Section 9.1]

sales order inbound [→ Section 9.1]

testing [→ Section 9.1]

IF_SWF_FLEX_IFS_DEF_APPL [→ Section 15.1]

[→ Section 15.3]

IF_SWF_FLEX_IFS_RUN_APPL [→ Section 15.1]

[→ Section 15.3]

IF_SWF_FLEX_IFS_RUN_APPL_STEP [→ Section 15.3]

IF_SWF_IFS_WF_CONSTRUCTOR [→ Section 9.6]

IF_SWF_IFS_WF_DESTRUCTOR [→ Section 9.6]

IF_SWF_IFS_WORKITEM_EXIT [→ Section 9.6]

IF_T100_DYN_MSG [→ Section 3.2]

IF_T100_MESSAGE [→ Section 3.2]

IF_WAPI_WORKITEM_CONTEXT [→ Section 9.6]

IF_WORKFLOW [→ Section 3.2] [→ Section 15.1]

[→ Section 15.1] [→ Section 15.1]

IFEXIST [→ Section 3.1]

IFSAP [→ Section 3.1]

IFSTATUS [→ Section 3.1]

IM_EVENT_NAME [→ Section 9.6]

Import parameters [→ Section 3.1]

Incoming documents [→ Section 8.8]

Instance linkages [→ Section 5.4]

Integration [→ Section 11.1]

Interface methods [→ Section 3.2]

Interfaces [→ Section 3.1] [→ Section 15.1]

Intermediate escalation events [→ Section 18.2]

Intermediate message events [→ Section 18.2]

Intermediate timer events [→ Section 18.2]

J ⇑

Java Unified Expression Language (JUEL) [→ Section

18.2]

Jobs [→ Section 9.1]

K ⇑

Key fields [→ Section 3.1]

create [→ Section 3.1]

L ⇑

Latest end [→ Section 4.3]

Latest start [→ Section 4.3]

Leading objects [→ Section 15.1] [→ Section 15.3]

[→ Section 15.3]

Local persistent object reference [→ Section 3.2]

Local workflow [→ Section 4.2] [→ Section 4.2]

Loop [→ Section 4.2]

M ⇑

Macros [→ Section 3.1]

Mail tasks [→ Section 18.3]

Maintain Email Templates app [→ Section 15.3]

[→ Section 15.3] [→ Section 15.3] [→ Section 15.4]

[→ Section 16.2]

custom template [→ Section 16.2]

Manage My Substitutes app [→ Appendix Note]

Manage Process and Workflows app [→ Section 18.8]

Manage Teams and Responsibilities app [→ Section

16.4]

Manage Workflow Scenarios app [→ Section 1.3]

[→ Section 15.7] [→ Section 16.2] [→ Section 16.5]

Manage Workflows app [→ Section 1.3] [→ Section

14.1] [→ Section 14.4] [→ Section 15.3] [→ Section

15.3] [→ Section 15.3] [→ Section 15.3] [→ Section

15.3] [→ Section 15.4] [→ Section 15.4] [→ Section

16.5]

deadlines [→ Section 14.4]

dialog activity [→ Section 14.4]

exceptions [→ Section 14.4]

new template [→ Section 14.4]

set up standard scenario [→ Section 14.4]

step conditions [→ Section 14.4]

Material workflows [→ Section 13.4]

Message control [→ Section 5.1]

Methods [→ Section 3.1] [→ Section 3.1] [→ Section

15.1] [→ Section 15.1]

attributes [→ Section 3.1]

create [→ Section 3.1] [→ Section 3.2]

definition [→ Section 3.1]

Migrating workflows [→ Section 12.1] [→ Section 12.2]

archive objects [→ Section 12.2]

custom code [→ Section 12.2]

new features [→ Section 12.2]

options [→ Section 12.1]

system changes [→ Section 12.2]

technical migration [→ Section 12.3]

Modeled [→ Section 4.6]

Multiline workflow container [→ Section 4.5]

Multiple condition [→ Section 4.2] [→ Section 4.2]

My Inbox [→ Section 1.1] [→ Section 8.5] [→ Section

14.1] [→ Section 14.4] [→ Section 15.3] [→ Section

15.5] [→ Section 15.6] [→ Section 15.6] [→ Section

18.8] [→ Section 18.8]

additional task attributes [→ Section 11.2]

configure in SAP Build Work Zone [→ Appendix

Note]

features [→ Section 11.1]

integrate external applications [→ Section 11.2]

navigation [→ Appendix Note]

overview [→ Section 11.1]

SAP BTP [→ Appendix Note] [→ Appendix Note]

scenario-specific [→ Section 11.2]

tile [→ Appendix Note]

variants [→ Section 11.1]

My Inbox – All Items app [→ Section 11.2]

target mapping [→ Section 11.2]

N ⇑

Near-zero downtime [→ Section 12.3]

Notification agents [→ Section 6.1]

Notifications [→ Section 16.3]

O ⇑

Object type definition [→ Section 3.1]

Object type status [→ Section 3.1]

Object types [→ Section 5.1] [→ Section 9.1]

Object-oriented programming (OOP) [→ Section 3.1]

OData [→ Section 18.3]

Optical character recognition (OCR) [→ Section 8.8]

Organization management [→ Section 1.3]

Organization structure [→ Section 6.4]

Organization units [→ Section 9.1]

P ⇑

Parallel gateway [→ Section 18.2] [→ Section 18.8]

Partner profiles [→ Section 9.1]

Persistence object references [→ Section 15.1]

Person [→ Section 9.1]

Phases [→ Section 19.1]

Position [→ Section 9.1]

Possible agents [→ Section 6.1] [→ Section 6.3]

[→ Section 6.3]

Pre-migration activities [→ Section 12.1]

Process and Workflow Definitions app [→ Section 1.3]

Process and Workflow Instances app [→ Section 1.3]

[→ Section 18.8]

Process builder [→ Section 1.3] [→ Section 18.3]

[→ Section 18.8] [→ Section 19.1]

artifacts [→ Section 18.3]

project name [→ Section 18.3]

repository [→ Section 18.3]

steps [→ Section 18.3]

use [→ Section 18.3]

Process codes [→ Section 9.1]

Process control [→ Section 4.2] [→ Section 4.2]

[→ Section 4.2] [→ Section 4.2]

Process data [→ Section 15.3]

Process monitoring [→ Section 19.3]

Process patterns [→ Section 13.1]

Process visibility [→ Section 19.1]

add process [→ Section 19.1]

configure [→ Section 19.1]

configure phases [→ Section 19.1]

configure scenario [→ Section 19.1]

configure status [→ Section 19.1]

create scenario [→ Section 19.1]

dashboard [→ Section 19.4]

deploy project [→ Section 19.1]

performance indicators [→ Section 19.1]

process preparation [→ Section 19.1]

release project [→ Section 19.1]

roles [→ Section 19.1]

scenarios [→ Section 1.2]

substatus [→ Section 19.1]

test scenario [→ Section 19.2]

version control [→ Section 19.1]

Program exits [→ Section 4.3] [→ Section 9.6]

[→ Section 9.6]

Program RESIDOCA [→ Section 9.2]

Program RHWEGID00 [→ Section 6.2]

Program RSWNNOTIFDEL [→ Section 7.5]

Program RSWUWFML2 [→ Section 7.2]

data for individual run [→ Section 7.2]

executable attachments [→ Section 7.2]

exits [→ Section 7.2]

granularity [→ Section 7.2]

instance data [→ Section 7.2]

log [→ Section 7.2]

message text [→ Section 7.2]

selection of work items and recipients [→ Section

7.2]

shortcuts [→ Section 7.2]

variants [→ Section 7.2]

Program SWN_SELSEN [→ Section 7.5]

Program SWNCONFIG [→ Section 7.3]

business scenario [→ Section 7.3]

category [→ Section 7.3]

customizing [→ Section 7.3]

delivery [→ Section 7.3]

delivery schedule [→ Section 7.3]

delta filter [→ Section 7.3]

filter pair [→ Section 7.3]

full filter [→ Section 7.3]

notification process [→ Section 7.3]

selection [→ Section 7.3]

selection schedules [→ Section 7.3]

subscription [→ Section 7.3]

Q ⇑

Quality inspection request [→ Section 5.1]

R ⇑

Receiver call [→ Section 5.2]

Receiver determination [→ Section 5.2]

Receiver function module [→ Section 5.2] [→ Section

5.5]

Receiver type [→ Section 5.2]

Register Extensions for Transport app [→ Section 16.5]

Remote Function Calls (RFCs) [→ Section 1.3]

Reporting [→ Section 9.5]

Requested end [→ Section 4.3]

Requested start [→ Section 4.3]

Requirement routine [→ Section 5.1]

Responsibility [→ Section 6.2] [→ Section 6.2]

Responsible agents [→ Section 6.1]

RH_GET_ACTORS [→ Section 6.2]

Roles [→ Section 15.3] [→ Section 15.3] [→ Section

15.3] [→ Section 15.4] [→ Section 15.4] [→ Section

15.7]

Rule-based workflows [→ Section 13.1]

design [→ Section 13.1]

extend [→ Section 13.1]

Rules [→ Section 1.3] [→ Section 4.4] [→ Section 9.1]

[→ Section 18.3] [→ Section 18.8]

containers [→ Section 6.2]

types [→ Section 6.2]

Run time class [→ Section 15.3]

Runtime jobs [→ Section 7.1]

RVNSWE01 [→ Section 5.1]

S ⇑

SAP BTP cockpit [→ Section 17.4] [→ Section 18.5]

SAP Build Process Automation [→ Section 1.1]

[→ Section 1.1] [→ Section 1.1] [→ Section 1.2]

[→ Section 11.4] [→ Section 17.1] [→ Section 18.3]

booster [→ Section 17.4]

deploy project [→ Section 18.4]

lobby [→ Section 17.5] [→ Section 18.3]

monitor [→ Section 17.5]

My Inbox [→ Appendix Note]

overview [→ Section 17.1]

project name [→ Section 17.5]

release project [→ Section 18.4]

run project [→ Section 18.4]

security [→ Section 17.6]

set up required services [→ Section 17.4]

start project [→ Section 17.5]

store [→ Section 17.5]

system requirements [→ Section 17.3]

troubleshooting [→ Section 17.7]

with SAP S/4HANA [→ Section 17.2]

workflow editor [→ Section 17.5]

SAP Build Work Zone [→ Appendix Note]

SAP Business Accelerator Hub [→ Section 11.4]

SAP Business Application Studio [→ Section 1.3]

[→ Section 18.2] [→ Section 18.8]

namespace [→ Section 18.2]

tasks [→ Section 18.2]

workflow module [→ Section 18.2]

SAP Business Process Automation [→ Section 1.3]

SAP Business Technology Platform (SAP BTP)

[→ Section 1.1]

My Inbox [→ Appendix Note]

roles and authorizations [→ Section 1.4]

workflows [→ Section 1.2]

SAP Business Workflow

check HR table entries [→ Section 2.3]

check number ranges [→ Section 2.3]

classify decision task as general [→ Section 2.3]

classify tasks as general [→ Section 2.3]

configure [→ Section 2.3]

configure RFC destination [→ Section 2.3]

email notifications [→ Section 7.2]

integrating external applications [→ Section 11.4]

integrating with BRFplus [→ Section 10.2]

maintain active plan version [→ Section 2.3]

maintain additional settings and services

[→ Section 2.3]

maintain administrator [→ Section 2.3]

maintain definition environment [→ Section 2.3]

maintain runtime environment [→ Section 2.3]

maintain time units [→ Section 2.3]

SAP ERP vs SAP S/4HANA [→ Section 1.1]

schedule background job [→ Section 2.3]

SAP Cloud Transport Management [→ Section 18.6]

SAP Content Agent [→ Section 18.6]

SAP Event Mesh [→ Section 18.2]

SAP Fiori [→ Section 12.1] [→ Section 16.1]

SAP Fiori launchpad [→ Section 8.5] [→ Section 11.2]

dynamic tile [→ Section 11.2]

SAP GUI [→ Section 12.1]

SAP inbox [→ Section 8.4]

SAP Integration Suite [→ Section 11.4]

SAP Master Data Governance (SAP MDG) [→ Section

13.1]

consolidation and mass processing [→ Section

13.1]

overview [→ Section 13.1]

SAP MDG, Financials [→ Section 13.3]

change request types [→ Section 13.3]

data models [→ Section 13.3]

workflow templates [→ Section 13.3]

SAP Notes [→ Section 12.2]

SAP S/4HANA [→ Section 15.1]

SAP S/4HANA Cloud, private edition [→ Section 1.1]

SAP S/4HANA Cloud, public edition [→ Section 1.1]

SAP S/4HANA migration [→ Section 12.1]

SAP Solution Manager [→ Section 18.6]

SAP Task Center [→ Section 1.1] [→ Section 20.2]

booster [→ Section 20.2]

product support [→ Section 20.2]

restrictions [→ Section 20.2]

SAP Workflow Management [→ Section 1.2] [→ Section

17.1] [→ Section 18.2]

SAP_WAPI_CREATE_EVENT [→ Section 5.1]

SAP_WAPI_CREATE_EVENT_EXTENDED [→ Section 5.1]

SAP_WFRT [→ Section 12.2]

SAP_WORKFLOW_SYSTEM [→ Section 3.1]

SAP_WORKFLOW_SYSTEM_TEMPORARY [→ Section 3.1]

SAPconnect [→ Section 7.1]

SAPUI5 [→ Section 18.2]

SAPUI5 applications [→ Section 11.2]

Scenario context [→ Section 15.3] [→ Section 15.3]

Scenario editor [→ Section 14.4]

Scenario ID [→ Section 16.2]

Script tasks [→ Section 18.2] [→ Section 18.8]

Secondary priority [→ Section 6.2]

Security roles [→ Section 1.4]

Selected agents [→ Section 6.1]

Selective data transition [→ Section 12.1] [→ Section

12.3]

overview [→ Section 12.3]

Send mail [→ Section 4.2] [→ Section 4.3] [→ Section

9.1]

Sentiment [→ Section 19.4]

Sequence flow [→ Section 18.2]

Service tasks [→ Section 18.2] [→ Section 18.8]

SIBFLPOR [→ Section 15.1]

Simulations [→ Section 1.3]

Staging area [→ Section 13.1]

Start conditions [→ Section 5.3] [→ Section 9.1]

test [→ Section 5.3]

Start event [→ Section 15.3] [→ Section 18.2]

[→ Section 18.8]

Status management [→ Section 5.1]

Steps [→ Section 4.2] [→ Section 15.3]

add [→ Section 4.3]

Subprocesses [→ Section 18.3]

Substitution [→ Section 8.5] [→ Section 8.5]

deactivation [→ Section 8.5]

details [→ Section 8.5]

profile [→ Section 8.5]

SAP Fiori [→ Section 8.5]

SAP GUI [→ Section 8.5]

work item-specific [→ Section 8.5]

Substitutions [→ Appendix Note]

Subtypes [→ Section 3.1]

create [→ Section 3.1]

Subworkflows [→ Section 4.2] [→ Section 4.2]

Supertypes [→ Section 3.1]

SWB_2_CHECK_FB_START_COND_EVAL [→ Section 5.5]

SWC_CALL_METHOD [→ Section 3.1]

SWC_CONTAINER [→ Section 3.1]

SWC_CONTAINER_CREATE [→ Section 3.1]

SWC_CREATE_OBJECT [→ Section 3.1]

SWC_GET_PROPERTY [→ Section 3.1]

SWC_GET_TABLE_PROPERTY [→ Section 3.1]

SWC_SET_ELEMENT [→ Section 3.1]

SWC_SET_TABLE [→ Section 3.1]

SWCONT [→ Section 3.1]

SWE_EVENT_CREATE [→ Section 5.1]

SWE_EVENT_CREATE_IN_UPD_TASK [→ Section 5.1]

SWE_TEMPLATE_CHECK_FB [→ Section 5.2]

SWE_TEMPLATE_CHECK_FB_2 [→ Section 5.2]

SWE_TEMPLATE_REC_FB [→ Section 5.2]

SWE_TEMPLATE_REC_FB_2 [→ Section 5.2]

SWE_TEMPLATE_RECTYPE_FB [→ Section 5.2]

SWE_TEMPLATE_RECTYPE_FB_2 [→ Section 5.2]

SWEAD [→ Section 5.2]

SWF_CRT_NOTIFY_RECIPIENTS [→ Section 15.3]

SWF_PROCESS_WORKFLOW_CONDITION [→ Section

15.3]

SWF_WORKFLOW_CONDITION_DEF [→ Section 14.5]

SWF_WORKFLOW_CONDITION_EVAL [→ Section 14.5]

SWHACTOR [→ Section 6.2]

SWW_WI_CREATE_VIA_EVENT_IBF [→ Section 5.2]

[→ Section 5.5]

System conversion [→ Section 12.1]

System errors [→ Section 3.1]

T ⇑

Task groups [→ Section 1.3]

Tasks [→ Section 1.3] [→ Section 3.1] [→ Section 4.2]

[→ Section 18.2]

add [→ Section 4.3]

container [→ Section 3.3]

define standard [→ Section 3.3]

definition [→ Section 3.3]

description [→ Section 3.3]

settings [→ Section 3.3]

visualizations [→ Section 11.2]

Technical logs [→ Section 15.7] [→ Section 15.7]

[→ Section 15.7]

Technical view [→ Section 8.1]

Temporary errors [→ Section 3.1]

Terminate end events [→ Section 18.2]

Terminating events [→ Section 3.3]

Testing [→ Section 1.3]

Traces [→ Section 1.3] [→ Section 5.1]

Transaction

BD67 [→ Section 9.1] [→ Section 9.1]

BRF+ [→ Section 10.1]

BS02 [→ Section 5.1]

BSVW [→ Section 12.2]

BSVX [→ Section 5.1]

BSVZ [→ Section 5.1]

FB50 [→ Section 8.2]

FDT_HELPERS [→ Section 1.3]

MDGIMG [→ Section 13.1]

NACE [→ Section 5.1] [→ Section 5.1]

OOCU_RESP [→ Section 6.2]

PFAC [→ Section 3.3] [→ Section 6.2]

PFAC_CHG [→ Section 6.2]

PFAC_DIS [→ Section 6.2]

PFCG [→ Section 11.2]

PFOM [→ Section 6.2]

PFTC [→ Section 2.2] [→ Section 3.3] [→ Section

4.2] [→ Section 4.4]

PPOSW [→ Section 1.3]

RMPS_SET_SUBSTITUTE [→ Section 8.5]

S_ATO_SETUP [→ Section 16.1]

SBWP [→ Section 11.1]

SCDO [→ Section 5.1]

SE16N [→ Section 2.2]

SJOBREPO [→ Section 12.2]

SLG3 [→ Section 8.2]

SOST [→ Section 9.1]

SU01 [→ Section 7.1]

SWB_COND [→ Section 5.3] [→ Section 5.3]

[→ Section 9.1] [→ Section 12.2]

SWDC_RUNTIME [→ Section 2.3]

SWDD [→ Section 1.3] [→ Section 4.1] [→ Section

6.2] [→ Section 10.2]

SWDD_SCENARIO [→ Section 1.3] [→ Section 14.1]

[→ Section 14.4] [→ Section 15.3] [→ Section 15.3]

[→ Section 16.3]

SWDM [→ Section 2.2]

SWE2 [→ Section 2.4] [→ Section 5.2] [→ Section

12.2] [→ Section 13.1]

SWE3 [→ Section 5.4]

SWEC [→ Section 5.1] [→ Section 12.2] [→ Section

12.2]

SWED [→ Section 5.1]

SWEINST [→ Section 5.4]

SWEL [→ Section 5.1] [→ Section 5.1]

SWELS [→ Section 5.1] [→ Section 8.3]

SWEQADM [→ Section 8.7]

SWETYPV [→ Section 5.2] [→ Section 8.7]

[→ Section 12.2] [→ Section 15.3]

SWF_USER_ATTR [→ Section 11.2]

SWFVISU [→ Section 11.2] [→ Section 15.6]

SWFVMD1 [→ Section 11.2]

SWI2_ADM1 [→ Section 8.2]

SWI2_DEAD [→ Section 9.5]

SWI2_DIAG [→ Section 8.2] [→ Section 15.7]

SWI2_DURA [→ Section 9.5]

SWI5 [→ Section 9.5]

SWI6 [→ Section 1.3] [→ Section 8.1]

SWIA [→ Section 8.1]

SWNCONFIG [→ Section 7.3] [→ Section 7.4]

SWO1 [→ Section 3.1] [→ Section 3.1] [→ Section

3.1] [→ Section 4.4] [→ Section 6.2] [→ Section 9.1]

SWO3 [→ Section 3.1]

SWPR [→ Section 8.2]

SWU_OBUF [→ Section 8.3]

SWU3 [→ Section 2.3] [→ Section 2.3] [→ Section

3.3] [→ Section 12.2]

SWUS [→ Section 1.3]

VA01/VA02 [→ Section 5.1]

WE19 [→ Section 9.1]

WE20 [→ Section 9.1]

WE42 [→ Section 9.1]

Transport management [→ Section 18.6]

Transport workflow definitions [→ Section 16.5]

Transporting extensions [→ Section 16.5]

Transports [→ Section 1.3]

Trigger workflows [→ Section 19.4]

Triggering events [→ Section 3.3] [→ Section 4.2]

Triggers [→ Section 18.3] [→ Section 18.8]

Triggers app [→ Section 1.3]

U ⇑

Universal worklist [→ Section 1.1] [→ Section 11.2]

Upgrades [→ Section 12.2]

workflow testing [→ Section 12.2]

workflow versions [→ Section 12.2]

User authentication [→ Section 17.4]

User decision [→ Section 4.2] [→ Section 15.3]

[→ Section 15.3]

User interface (UI) [→ Section 11.2] [→ Section 12.2]

User master data migration [→ Section 12.3]

User tasks [→ Section 18.2]

User view [→ Section 8.1]

V ⇑

Value help [→ Section 15.3] [→ Section 15.3]

Virtual attributes [→ Section 3.1]

create [→ Section 3.1]

definition [→ Section 3.1]

W ⇑

Wait controls [→ Section 18.3]

Web activities [→ Section 4.2]

Web Dynpro applications [→ Section 11.2]

WF chronicle [→ Section 8.1]

WF-BATCH [→ Section 12.2]

Work centers [→ Section 9.1]

Work item text [→ Section 3.3]

Work items [→ Section 8.4]

Workflow administrator [→ Section 1.4]

Workflow Builder [→ Section 1.3] [→ Section 4.1]

[→ Section 4.1]

information area [→ Section 4.1]

navigation [→ Section 4.1]

step types [→ Section 4.1]

Workflow classes [→ Section 3.2] [→ Section 15.1]

Workflow containers [→ Section 4.1] [→ Section 13.1]

Workflow Designer [→ Section 18.2]

Workflow developer [→ Section 1.4]

Workflow events [→ Section 15.3]

Workflow graphical area [→ Section 4.1]

Workflow logs [→ Section 8.1] [→ Section 8.1]

[→ Section 13.1]

Workflow object view [→ Section 8.1]

Workflow scenarios [→ Section 15.3] [→ Section 15.3]

[→ Section 15.3] [→ Section 15.4] [→ Section 15.4]

[→ Section 15.4] [→ Section 15.8]

Workflow start events [→ Section 15.3]

Workflow steps [→ Section 15.3]

Workflow tasks [→ Section 15.3]

Workflow templates [→ Section 13.1]

WS54300003 [→ Section 13.2]

WS54300007, WS60800059, and WS60800068

[→ Section 13.2]

WS54400001 and WS54300005 [→ Section 13.2]

WS60800086 [→ Section 13.1] [→ Section 13.2]

WS60800095 and WS72100006 [→ Section 13.2]

WS75700027 [→ Section 13.3]

WS75700040 [→ Section 13.3]

Workflow wizard [→ Section 4.1]

Service Pages

The following sections contain notes on how you can contact

us. In addition, you are provided with further

recommendations on the customization of the screen layout

for your e-book.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your

expectations, please do recommend it. If you think there is

room for improvement, please get in touch with the editor of

the book: Meagan White. We welcome every suggestion for

improvement but, of course, also any praise! You can also

share your reading experience via Twitter, Facebook, or

email.

Technical Issues

If you experience technical issues with your e-book or e-

book account at SAP PRESS, please feel free to contact our

reader service: support@rheinwerk-publishing.com.

Please note, however, that issues regarding the screen

presentation of the book content are usually not caused by

errors in the e-book document. Because nearly every

mailto:meaganw@rheinwerk-publishing.com
mailto:support@rheinwerk-publishing.com

reading device (computer, tablet, smartphone, e-book

reader) interprets the EPUB or Mobi file format differently, it

is unfortunately impossible to set up the e-book document

in such a way that meets the requirements of all use cases.

In addition, not all reading devices provide the same text

presentation functions and not all functions work properly.

Finally, you as the user also define with your settings how

the book content is displayed on the screen.

The EPUB format, as currently provided and handled by the

device manufacturers, is actually primarily suitable for the

display of mere text documents, such as novels. Difficulties

arise as soon as technical text contains figures, tables,

footnotes, marginal notes, or programming code. For more

information, please refer to the section Notes on the Screen

Presentation and the following section.

Should none of the recommended settings satisfy your

layout requirements, we recommend that you use the PDF

version of the book, which is available for download in your

online library.

Recommendations for Screen

Presentation and Navigation

We recommend using a sans-serif font, such as Arial or

Seravek, and a low font size of approx. 30–40% in portrait

format and 20–30% in landscape format. The background

shouldn’t be too bright.

Make use of the hyphenation option. If it doesn't work

properly, align the text to the left margin. Otherwise, justify

the text.

To perform searches in the e-book, the index of the book

will reliably guide you to the really relevant pages of the

book. If the index doesn't help, you can use the search

function of your reading device.

Since it is available as a double-page spread in landscape

format, the table of contents we’ve included probably

gives a better overview of the content and the structure of

the book than the corresponding function of your reading

device. To enable you to easily open the table of contents

anytime, it has been included as a separate entry in the

device-generated table of contents.

If you want to zoom in on a figure, tap the respective

figure once. By tapping once again, you return to the

previous screen. If you tap twice (on the iPad), the figure is

displayed in the original size and then has to be zoomed in

to the desired size. If you tap once, the figure is directly

zoomed in and displayed with a higher resolution.

For books that contain programming code, please note

that the code lines may be wrapped incorrectly or displayed

incompletely as of a certain font size. In case of doubt,

please reduce the font size.

About Us and Our Program

The website https://www.sap-press.com provides detailed

and first-hand information on our current publishing

https://www.sap-press.com/

program. Here, you can also easily order all of our books

and e-books. Information on Rheinwerk Publishing Inc. and

additional contact options can also be found at

https://www.sap-press.com.

https://www.sap-press.com/

Legal Notes

This section contains the detailed and legally binding usage

conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All

usage and exploitation rights are reserved by the author

and Rheinwerk Publishing; in particular the right of

reproduction and the right of distribution, be it in printed or

electronic form.

© 2024 by Rheinwerk Publishing Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes

only. In particular, you may print the e-book for personal use

or copy it as long as you store this copy on a device that is

solely and personally used by yourself. You are not entitled

to any other usage or exploitation.

In particular, it is not permitted to forward electronic or

printed copies to third parties. Furthermore, it is not

permitted to distribute the e-book on the internet, in

intranets, or in any other way or make it available to third

parties. Any public exhibition, other publication, or any

reproduction of the e-book beyond personal use are

expressly prohibited. The aforementioned does not only

apply to the e-book in its entirety but also to parts thereof

(e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as

well as the digital watermark may not be removed from the

e-book.

Digital Watermark

This e-book copy contains a digital watermark, a

signature that indicates which person may use this copy.

If you, dear reader, are not this person, you are violating the

copyright. So please refrain from using this e-book and

inform us about this violation. A brief email to

info@rheinwerk-publishing.com is sufficient. Thank you!

Trademarks

The common names, trade names, descriptions of goods,

and so on used in this publication may be trademarks

without special identification and subject to legal

regulations as such.

All of the screenshots and graphics reproduced in this book

are subject to copyright © SAP SE, Dietmar-Hopp-Allee 16,

69190 Walldorf, Germany. SAP, ABAP, ASAP, Concur

Hipmunk, Duet, Duet Enterprise, ExpenseIt, SAP

ActiveAttention, SAP Adaptive Server Enterprise, SAP

mailto:info@rheinwerk-publishing.com

Advantage Database Server, SAP ArchiveLink, SAP Ariba,

SAP Business ByDesign, SAP Business Explorer (SAP BEx),

SAP BusinessObjects, SAP BusinessObjects Explorer, SAP

BusinessObjects Web Intelligence, SAP Business One, SAP

Business Workflow, SAP BW/4HANA, SAP C/4HANA, SAP

Concur, SAP Crystal Reports, SAP EarlyWatch, SAP

Fieldglass, SAP Fiori, SAP Global Trade Services (SAP GTS),

SAP GoingLive, SAP HANA, SAP Jam, SAP Leonardo, SAP

Lumira, SAP MaxDB, SAP NetWeaver, SAP PartnerEdge,

SAPPHIRE NOW, SAP PowerBuilder, SAP PowerDesigner, SAP

R/2, SAP R/3, SAP Replication Server, SAP Roambi, SAP

S/4HANA, SAP S/4HANA Cloud, SAP SQL Anywhere, SAP

Strategic Enterprise Management (SAP SEM), SAP

SuccessFactors, SAP Vora, TripIt, and Qualtrics are registered

or unregistered trademarks of SAP SE, Walldorf, Germany.

Limitation of Liability

Regardless of the care that has been taken in creating texts,

figures, and programs, neither the publisher nor the author,

editor, or translator assume any legal responsibility or any

liability for possible errors and their consequences.

The Document Archive

The Document Archive contains all figures, tables, and

footnotes, if any, for your convenience.

Figure 1.1 Sample Workflow Definition Using the

Classical Workflow Approach

Figure 1.2 View of Workflow Builder with Different

Development and Navigation Options

Figure 1.3 Example of Workflow Single Testing via

Transaction SWUS

Figure 1.4 Sample Selection Criteria for Parked

Journal Entry Approval Workflow Search Based on

Document Key

Figure 1.5 Sample Output of Transaction SWI6

with Details of Workflow Triggered for a Parked Journal

Entry Document

Figure 1.6 Development Tools

Figure 1.7 Operations Possible via the Application

Administration Tool

Figure 1.8 Search Screen for the Application

Usage Tool

Figure 1.9 Dictionary Usages Tool

Figure 1.10 Selection Screen of Simulation Tool

Figure 1.11 Simulation Outcome

Figure 2.1 List of Workflow Templates in Business

Workflow Explorer

Figure 2.2 Selection Criteria to Fetch All the SAP

Standard Workflow Templates in the Material

Management Area

Figure 2.3 Results of the Preceding Selection

Showing the Standard Workflow Template in Materials

Management

Figure 2.4 List of Purchasing Workflows from

Transaction PFTC

Figure 2.5 Automatic Workflow Customizing

Figure 2.6 Automatic RFC Destination

Configuration

Figure 2.7 Maintain the Workflow System

Administrator at the Workflow Level

Figure 2.8 Manual Maintenance of the Active Plan

Version

Figure 2.9 Shows the Maintenance of Units of

Measurement

Figure 2.10 SAP Background Job Related to the

Event Queue

Figure 2.11 Maintain the Prefix Number for

Workflow

Figure 2.12 Check Number Ranges in SAP

Automatic Workflow Customizing

Figure 2.13 Report RHTTCP77

Figure 2.14 Classify Tasks as General

Figure 2.15 Task Group: Maintain Agent

Assignment

Figure 2.16 Triggering Event of Standard Purchase

Release Workflow

Figure 2.17 Event Linkage between Source Event

RELEASESTEPCREATED (BUS2012) and Receiver

Workflow Type WS20000075

Figure 2.18 Standard Rule 20000027 Determines

the Agent of Person Responsible for PO Release

Figure 2.19 Sample Agent Determination Based

on Purchase Release Group and Release Code

Figure 2.20 Flow Diagram Depicting When to

Create a Custom Workflow

Figure 3.1 Definition of a Business Object Type

with Key Fields, Attributes, Methods, and Events

Figure 3.2 Sales Order Business Object Type from

BAPI Explorer

Figure 3.3 Method ChangeFromData under

SalesOrder Object Type Showing the Link to BAPI

Figure 3.4 View of Methods under a Business

Object Type Definition in Transaction SWO1

Figure 3.5 Method Definition in a Business Object

Type Showing the BAPI Call as an API Function

Figure 3.6 View of Interfaces Defined in a Sample

Business Object Type

Figure 3.7 Definition of Key Field in a Business

Object Type

Figure 3.8 Definition of Attributes in a Business

Object Type

Figure 3.9 Attribute Definition Showing

Database/Virtual, Multiline, Reference Table/Field

Properties

Figure 3.10 Method Definition Showing Dialog,

Synchronous, Result Parameter, and Instance

Independent Properties

Figure 3.11 Method Definition Showing the

Different ABAP Coding Options Available

Figure 3.12 Method Parameter Definition in a BOR

Type

Figure 3.13 View of Event Definition within an

Object Type

Figure 3.14 Definition of Import Parameters in an

Event on a BOR Type

Figure 3.15 BOR Program Name Maintained at the

Header Level

Figure 3.16 Custom BOR Subtype Definition

Showing Inherited Components

Figure 3.17 View of the BOR in SAP with Object

Type Hierarchies Grouped by Application Components

Figure 3.18 Creating a Custom BOR Type from

Transaction SWO1

Figure 3.19 Object Type Definition Created in

Modeled Status

Figure 3.20 Object Type Status Changed to

Implemented

Figure 3.21 Popup to Choose between Database

or Virtual Definition of the Key Field

Figure 3.22 Selection of the Primary Key Table

and Key Field

Figure 3.23 Confirming the Key Field Name

Figure 3.24 View of Object Type Definition after

Creating the Key Field

Figure 3.25 Selection of Table Fields for the

Database Attribute Definition

Figure 3.26 Confirm the Database Attribute Name

per Naming Standards

Figure 3.27 Object Type Definition after Creation

of the Database Attribute

Figure 3.28 Popup to Automatically Generate

Template Code for the Database Attribute

Figure 3.29 View of Automatically Generated

Source Code for Database Attribute

Figure 3.30 Definition of a Virtual Attribute in the

Object Type

Figure 3.31 View of a Newly Created Virtual

Attribute in Modeled Status

Figure 3.32 Popup Prompt to Generate an Empty

Template Section for the Virtual Attribute

Figure 3.33 Generated Template Code Section for

the Virtual Attribute in the BOR Program

Figure 3.34 Popup Confirmation to Generate a

Template Section for Method Implementation

Figure 3.35 Template Section Inserted in the BOR

Program with Method Implementation

Figure 3.36 Popup to Confirm if the Method

Should Be Created with a Function Module Call

Figure 3.37 Popup Screen for Method Attributes

Selection

Figure 3.38 ABAP Tab Attributes for Method

Creation

Figure 3.39 Select Table Field for Method

Parameter Creation

Figure 3.40 Entering the Method Parameter Name

and Selecting Attributes

Figure 3.41 Creation of the Method Export

Parameter

Figure 3.42 View of Method Parameters

Figure 3.43 Selection of Exception Definition

Attributes

Figure 3.44 View of Method Exception Definition

Figure 3.45 Popup Prompt to Generate Method

Implementation in the BOR Program

Figure 3.46 Template Code for Method

Implementation Added into the BOR Program

Figure 3.47 Event Definition in the Business

Object Type

Figure 3.48 Event Definition in the BOR Object

Type

Figure 3.49 Testing a BOR Object Type in

Transaction SWO1

Figure 3.50 BOR Type Object Instance Displaying

Attributes and Methods Available for Execution

Figure 3.51 Testing a BOR Method

Figure 3.52 Creating a BOR Subtype Definition

from Transaction SWO1

Figure 3.53 Subtype Definition Showing Inherited

Components and Header Release Status

Figure 3.54 Delegation Configuration Showing the

Supertypes Maintained

Figure 3.55 Virtual Attribute ZWAVOrderType

Added in the Object Type Definition

Figure 3.56 Creation of a New Normal ABAP Class

from Transaction SE24

Figure 3.57 Addition of Interface IF_WORKFLOW to

the Workflow Class

Figure 3.58 View of the Key Attribute Definition in

the Workflow Business Class

Figure 3.59 Creation of the LPOR Attribute in the

Workflow Business Class

Figure 3.60 View of the Instance Buffer Attribute

in the Workflow Business Class

Figure 3.61 Overall View of Attributes in the

Workflow Business Class

Figure 3.62 Creating the Import Parameter(s) in

the Constructor Method of the Workflow Business

Class

Figure 3.63 Creation of a Custom Workflow

Exception Class Inheriting from a Standard Exception

Class

Figure 3.64 Add the Message Text Interfaces in

the Custom Exception Class

Figure 3.65 Add the Exception Class in the

Exceptions of Method Tab

Figure 3.66 View of Events Added in the Workflow

Business Class

Figure 3.67 Creating an Event Parameter in the

Triggering Event of the Workflow

Figure 3.68 Unit Test Workflow Class from

Transaction SE24

Figure 3.69 Instance Creation of the Workflow

Class

Figure 3.70 Basic Data Definition of a Standard

Task for the Workflow

Figure 3.71 Binding Editor Button in the Standard

Task Definition

Figure 3.72 View of Binding Editor for Mapping

Task and Method Container

Figure 3.73 View of Work Item Text and

Description for a User Decision Step in the Workflow

from the My Inbox App

Figure 3.74 Work Item Text/Description for a Send

Mail Step in the Workflow from the Outlook Inbox

Figure 3.75 View of Task Description with Long

Text Maintained Using Task Container Elements as

Variables

Figure 3.76 Task Description with Conditional Text

Using IF-ENDIF Command Lines

Figure 4.1 Workflow Builder Sections

Figure 4.2 Workflow Builder: Information Area

Figure 4.3 Workflow Builder: Navigation Area

Figure 4.4 Workflow Builder: Step Types

Figure 4.5 Workflow Builder: Other Components

List

Figure 4.6 A Sample Workflow View in Workflow

Builder

Figure 4.7 Open Workflow Builder from

Transaction PFTC

Figure 4.8 Workflow Technical Details View

Figure 4.9 Workflow Triggering Event Mapping

Figure 4.10 Workflow with Fork, Wait for Event,

Activity, and Loop Steps

Figure 4.11 Workflow Step Fork Details

Figure 4.12 Use of Subworkflow and Background

Task

Figure 4.13 Workflow Task Control Information and

Container Element Binding

Figure 4.14 Calling the Subworkflow Dynamically

Figure 4.15 Activity Step Details: Control Tab

Figure 4.16 Different Agent Determination Types

Figure 4.17 Activity Step Attributes: Details Tab

Figure 4.18 Send Email Step Type

Figure 4.19 User Decision Step Type

Figure 4.20 Workflow Container and Flow of Data

Using Container Binding

Figure 4.21 Workflow Container

Figure 4.22 Container Element of a Method

Figure 4.23 Container Binding Editor

Figure 4.24 Binding Expression Operation

Figure 4.25 Binding Container Operation

Figure 4.26 Multiline Container Element

Figure 4.27 Dynamic Parallel Processing with a

Multiline Container Element

Figure 4.28 Deadline Time Calculation

Figure 4.29 Action Notification Trigger When the

Work Item Deadline Is Reached

Figure 4.30 Action Event Trigger When the Work

Item Deadline Is Reached

Figure 4.31 Set Up the Modeled Outcome for the

LATEST END Deadline

Figure 4.32 Activate the Processing Obsolete

Outcome

Figure 5.1 A Change Document Object in SAP

Figure 5.2 Viewing the Change Actions Maintained

against a Change Document Object in Transaction

SWED

Figure 5.3 Configuring BOR/Class Events against a

Change Document Object in Transaction SWEC

Figure 5.4 Subtype with Custom Event Added from

Transaction SWO1

Figure 5.5 Custom Event Configured for the

Change Document Object in Transaction SWEC

Figure 5.6 Maintaining Field Restrictions for the

Event Trigger via Change Documents in Transaction

SWEC

Figure 5.7 Maintaining Field Restrictions with the

Condition Editor in Transaction SWEC

Figure 5.8 Changing a Credit Memo Request in

SAP S/4HANA with the Billing Block Set

Figure 5.9 Checking the Event Trace from

Transaction SWEL

Figure 5.10 Event Trace Showing Event Has

Triggered

Figure 5.11 Event Trace Details Showing Event

Creator Data

Figure 5.12 Event Configuration with System

Status in Transaction BSVX

Figure 5.13 System Status Restrictions for Event

Configuration

Figure 5.14 Event Configuration with User Status

Profile in Transaction BSVZ

Figure 5.15 User Status Restrictions for Event

Configuration

Figure 5.16 Steps for Event Configuration via

Table NAST Message Control Configuration

Figure 5.17 BOR Subtype Definition with Custom

Events

Figure 5.18 Custom Output Type Definition in

Application E1 in Transaction NACE

Figure 5.19 Maintenance of Processing Routine for

Transmission Medium 9 in Transaction NACE

Figure 5.20 Addition of Custom Output Type to the

Output Procedure along with Requirement Routine

Figure 5.21 Condition Record Maintenance for

Custom Output Type

Figure 5.22 Enter the Communication Data for the

Condition Record with BOR Type and Event

Figure 5.23 Workflow Event Output Generated

after Post Goods Receipt of Inbound Delivery

Figure 5.24 Event Trace Showing Event Triggered

for the Output Type

Figure 5.25 Event Trace Details Showing Event

Creator Instance Information

Figure 5.26 Event Trace Showing Event Creator

Information

Figure 5.27 Event Trace Showing Event Receiver

Information

Figure 5.28 Event Linkage from Transaction SWE2

or Transaction SWETYPV

Figure 5.29 Sample Event Linkage Showing the

Receiver Method Call

Figure 5.30 Event Linkage before Assigning a

Start Condition

Figure 5.31 Creation of a Custom Attribute in the

BOR Subtype Definition

Figure 5.32 Creation of Start Condition for Event

Linkage from Transaction SWB_COND

Figure 5.33 Maintaining the Start Condition Using

the Condition Editor in Transaction SWB_COND

Figure 5.34 Activate the Start Condition (Indicated

by the Green Icon to the Left)

Figure 5.35 Event Trace Showing Event Triggered

after Evaluation of Start Condition

Figure 5.36 Event Trace Showing Exception Raised

due to Start Condition Being Evaluated to False

Figure 5.37 Example of an Asynchronous Standard

Task

Figure 5.38 Terminating Events in an

Asynchronous Dialog Task

Figure 5.39 Instance Linkages from Transaction

SWE3 or Transaction SWEINST

Figure 5.40 Object Instances for an Instance

Linkage from Transaction SWE3 or Transaction

SWEINST

Figure 6.1 Agent Determination with a Default

Rule

Figure 6.2 Agent Determination with a Rule at the

Workflow Step Level

Figure 6.3 Agent Determination with an

Expression at the Workflow Step Level

Figure 6.4 Selected Agent Determination at the

Workflow Step Level

Figure 6.5 Assigning Excluded Agents at the

Workflow Step Level with an Expression

Figure 6.6 Actual Agent of a Completed Dialog

Step Captured in System Element _Wi_Actual_Agent

(Agent)

Figure 6.7 Deadline Agent Assignment at the

Workflow Step Level in a Deadline Tab

Figure 6.8 Maintain the Agent Assignment for the

Work Item Completion Message at the Workflow Step

Level

Figure 6.9 Maintain Notification of Completion Text

in the Task Description Tab

Figure 6.10 Creating a Rule from Transaction PFAC

Figure 6.11 View of the Container Definition for

Rule

Figure 6.12 Example of Binding between the

Workflow Container and Rule Container

Figure 6.13 Responsibility Creation Screen in

Transaction OOCU_RESP

Figure 6.14 Responsibility Definition Details View

inside Transaction OOCU_RESP

Figure 6.15 Agent Assignment for Rule

Responsibility Definition: Selection of Agent Type

Figure 6.16 Agent Assignment Created for the

Responsibility Definition

Figure 6.17 Rule with a Function Module Using an

Evaluation Path

Figure 6.18 Rule Definition Using Organization

Data Approach

Figure 6.19 Maintain Agent Assignment Attributes

at the Task Level

Figure 6.20 Create Agent Assignment

Figure 6.21 Popup to Select the Type of Agent

Figure 6.22 Popup to Select Role

Figure 6.23 View of Default Rules under Task

Definition in Transaction PFTC

Figure 6.24 View of an Organizational Structure in

SAP S/4HANA with Organizational Units, Positions,

Persons, and Users

Figure 7.1 Email Address to Be Maintained in the

User Master

Figure 7.2 Selecting SMTP Node

Figure 7.3 Setting Up SMTP Node

Figure 7.4 Transaction SCOT Configurations:

Further Settings

Figure 7.5 Program RSWUWFML2 to Send

Notifications for Work Items

Figure 7.6 Instance Data Section of the Selection

Screen

Figure 7.7 Send Granularity Section of the

Selection Screen

Figure 7.8 Add Executable Attachments to

Message Section of the Selection Screen

Figure 7.9 Standard Text for Notification Section of

the Selection Screen

Figure 7.10 Section SAP Shortcut Parameter of the

Selection Screen

Figure 7.11 Section Exits of the Selection Screen

Figure 7.12 Data for an Individual Run (Time

Stamp Not Set) Section in the Selection Screen

Figure 7.13 Log Section of the Selection Screen

Figure 7.14 Sample Application Log Output of

Program RSWUWFML2

Figure 7.15 Business Scenario Workflow in

Transaction SWNCONFIG

Figure 7.16 Creating a New Category by Copying

the STANDARD Category

Figure 7.17 Message Templates under Category

Also to Be Copied

Figure 7.18 Full Filter

Figure 7.19 Filter Settings

Figure 7.20 Delta Filter

Figure 7.21 Schedule Selection for Full and Delta

Filters

Figure 7.22 Delivery Schedule

Figure 7.23 Subscription and Subscription Settings

Figure 7.24 Handler Classes and the Methods of

Class CL_SWN_NOTIF_WORKFLOW

Figure 7.25 Selection Screen of Program

SWN_SELSEN

Figure 7.26 Selection Screen of Program

RSWNNOTIFDEL

Figure 8.1 User View of a Workflow Log: WF

Chronicle

Figure 8.2 Agent View in the Workflow Log

Figure 8.3 Workflow Log in Graphical View

Figure 8.4 Workflow Agent View

Figure 8.5 Workflow Object View in the Workflow

Log

Figure 8.6 Technical Workflow Log View

Figure 8.7 Technical Workflow Log: Container View

Figure 8.8 Workflow Log: Classic Technical View

Figure 8.9 Work Items without Agents

Figure 8.10 Diagnosis of Workflows with Errors

Figure 8.11 Agent Determination Error

Figure 8.12 Business Workplace

Figure 8.13 Business Workplace with Components

Figure 8.14 Personal Substitutes Creation Screen

Figure 8.15 Substitute Detail Screen

Figure 8.16 Classification of Tasks

Figure 8.17 Maintain Task Classification in the Task

Attribute Maintenance Screen

Figure 8.18 Create Classification from the Task

Maintenance Screen

Figure 8.19 Maintenance of Task Classification

Figure 8.20 Substitute Profiles

Figure 8.21 Assign the Substitute Profile to

Classifications

Figure 8.22 Substitute with Profile

Figure 8.23 SAP Office Document Automatic

Forwarding

Figure 8.24 My Inbox Substitutes

Figure 8.25 Add Planned Substitution

Figure 8.26 Dynamic Column Configuration for

Business Workplace

Figure 8.27 Event Linkage

Figure 8.28 Event Queue Administration Overview

Figure 8.29 Event Queue Administration Basic

Data

Figure 8.30 Event Queue Linkage with Errors

Figure 8.31 Content Server and ArchiveLink

Overview

Figure 8.32 Document Type Customizing Wizard

Figure 9.1 Partner Profile Configuration

Figure 9.2 Post Processing Agent for IDoc

Figure 9.3 Process Code Configuration

Figure 9.4 Standard Task to Process DELORD IDoc

Errors

Figure 9.5 Triggering Event for IDoc Error Handling

Task

Figure 9.6 Activating Event Linkage for the IDoc

Failure Processing Task

Figure 9.7 Terminating Event to Complete the

Work Item

Figure 9.8 Default Rule for Work Item Agent to

Process the Workflow Task

Figure 9.9 Same IDoc Error-Handling Event Used

for Multiple Process Codes

Figure 9.10 Success Event INPUTSUCCESS

Configured for the Process Code

Figure 9.11 Event Linkage Entry with IDoc Object

Type, Success Event, and Custom Workflow

Figure 9.12 Workflow Definition for Successful

Notification of IDoc Posting

Figure 9.13 Creating an IDoc as a Copy from

Transaction WE19

Figure 9.14 Posting an IDoc via Transaction WE19:

IDoc Test Transaction

Figure 9.15 Partner Profile Confirmation Popup

before IDoc Posting in Transaction WE19

Figure 9.16 IDoc Status Check from Transaction

WE02

Figure 9.17 IDoc Posting Notification as Viewed

from Transaction SOST

Figure 9.18 Work Item Created in the User Inbox

to Process the IDoc in the Foreground

Figure 9.19 Settings to Process the IDoc with the

Workflow

Figure 9.20 Selection Screen of the Active

Monitoring Batch Job

Figure 9.21 Workload Analysis (Transaction SWI5)

Sample Report Output

Figure 9.22 Monitored Deadline (Transaction

SWI2_DEAD) Sample Report Output

Figure 9.23 Work Items by Processing Duration

(Transaction SWI2_DURA) Sample Report Output

Figure 9.24 Maintenance of a Program Exit at the

Workflow Header Level

Figure 9.25 Maintenance of a Program Exit at the

Workflow Step Level

Figure 10.1 BRFplus Landing Page

Figure 10.2 Typical BRFplus Application

Figure 10.3 SAP Support Portal: Search Results

Page

Figure 10.4 BRFplus Demo Scenario Application

Figure 10.5 BRFplus Function ID

Figure 10.6 Transaction SWDD View

Figure 10.7 Create New Task for the Activity Type

Figure 10.8 Activity Step

Figure 10.9 Include BRFplus Function

Figure 10.10 Include BRFplus Function ID

Figure 10.11 Mapping Proposal between BRFplus

Function and Workflow Container Elements

Figure 10.12 Task View after Attaching BRFplus

Function

Figure 10.13 Name Your Workflow

Figure 10.14 Workflow Builder View after

Activation

Figure 10.15 Steps to Get the Workflow Container

View

Figure 10.16 Change Container Element View

Figure 10.17 Test Workflow View

Figure 10.18 Mapping Values from the BRFplus

Decision Table

Figure 10.19 Sequence of Steps to Execute and

Validate the Result

Figure 11.1 My Inbox App

Figure 11.2 Scenario Definition

Figure 11.3 My Inbox Scenario ID Configuration

Figure 11.4 Assigning Task IDs to a Scenario ID

Figure 11.5 Creating the SAP Fiori Scenario Tile

Figure 11.6 Scenario Dynamic Tile

Figure 11.7 Configuring a Scenario-Specific Tile

Figure 11.8 Target Mapping

Figure 11.9 Additional Details

Figure 11.10 Transaction SWF_USER_ATTR

Figure 11.11 User Attributes Task Details

Figure 11.12 My Inbox: Additional Details

Figure 11.13 Reindexing User Attributes for Old

Work Items

Figure 11.14 Updated User Attributes

Figure 11.15 Transaction SWFVISU

Figure 11.16 Visualization Parameter

Figure 11.17 Visualization Parameters: Intent-

Based Navigation

Figure 11.18 Visualization Parameters: My Inbox

Figure 11.19 Web Dynpro Visualization

Parameters

Figure 11.20 My Inbox Open Task

Figure 13.1 Typical Steps in a Change Request

Approval Workflow Process in SAP MDG

Figure 13.2 Standard Data Models Delivered by

SAP

Figure 13.3 Standard Change Request Types

Delivered by SAP

Figure 13.4 Change Request Steps for Change

Request Types That Use Rule-Based Workflows

Figure 13.5 Change Request Steps Defined for

Preconfigured Workflow Templates

Figure 13.6 Examples of Change Request Actions

Delivered with the Standard System

Figure 13.7 Change Request Step Types

Figure 13.8 Actions Assigned to Change Request

Step Type Approve Change Request

Figure 13.9 Business Object BUS2250 (SAP MDG

Change Request)

Figure 13.10 Event Type Linkages for Object

BUS2250 (SAP MDG Change Request) Part 1

Figure 13.11 Event Type Linkages for Object

BUS2250 (SAP MDG Change Request) Part 2

Figure 13.12 Categorizing Workflow Tasks as

General Tasks

Figure 13.13 Typical Workflow Container Used by

Standard Workflow Templates in SAP MDG

Figure 13.14 Workflow Log for an SAP MDG

Change Request

Figure 13.15 Examples of Process Patterns Built

Using the Rule-Based Workflow Template

Figure 13.16 Process Diagram for Rule-Based

Workflow Template WS60800086

Figure 13.17 Outline of a Process Implemented

Using the Rule-Based Workflow

Figure 13.18 Decision Table Entries for the

Preceding Process

Figure 13.19 Process Templates Used in SAP MDG,

Consolidation and Mass Processing

Figure 13.20 Event Type Linkage for the STARTED

Event of Business Object BUS2240

Figure 13.21 Business Partner Data Model Used in

SAP MDG

Figure 13.22 Workflow Process Diagram for

WS60800095 and WS72100006

Figure 13.23 Example of Agent Determination

Using a BRFPlus Decision Table

Figure 13.24 Process Diagram for Workflow

Templates WS54400001 and WS54300005

Figure 13.25 Workflow Process Diagram for

Template WS54300003

Figure 13.26 Agent Assignment for Workflow

Template WS54300003

Figure 13.27 Workflow Process Diagram Template

for WS54300007

Figure 13.28 Entities and Relationships in the

Finance Data Model in SAP MDG

Figure 13.29 Workflow Process Diagram for

Template WS75700040

Figure 13.30 Agent Assignment for Workflow

Template WS75700040

Figure 13.31 Process Diagram for Advanced

Workflow Template WS75700027

Figure 14.1 Choosing between Classical and

Flexible Workflows

Figure 14.2 Migration Path

Figure 14.3 Transaction SWDD_SCENARIO

Figure 14.4 Manage Workflows App: Workflows

List

Figure 14.5 Scenario Activation Steps

Figure 14.6 Transaction SWU3

Figure 14.7 Activate the Flexible Scenario

Figure 14.8 My Inbox Settings

Figure 14.9 My Inbox: Task Decision Keys

Figure 14.10 Transaction SWFVISU

Figure 14.11 Manage Workflows Homepage View

Figure 14.12 Manage Workflows: New Template

Figure 14.13 Manage Workflows: Start Conditions

Figure 14.14 Manage Workflows: Add Steps

Figure 14.15 Manage Workflows: Step Details

Figure 14.16 Manage Workflows: Step Conditions

Figure 14.17 Manage Workflows: Deadlines

Figure 14.18 Manage Workflows: Exception

Handling

Figure 14.19 Manage Workflows: Activate the

Workflow Template

Figure 15.1 Flow Diagram for the Sample Use

Case

Figure 15.2 Custom Class for the Sample Use

Case

Figure 15.3 Interface for the Sample Use Case

Figure 15.4 Attributes of the Workflow Class for

the Sample Use Case

Figure 15.5 Event in the Custom Class for the

Sample Use Case

Figure 15.6 Methods of the Workflow Class of the

Use Case

Figure 15.7 Leading Object and Related CDS View

for Purchase Requisition

Figure 15.8 Maintain the Business Object Type

Figure 15.9 Maintain Business Object Node Type.

Figure 15.10 Maintain CDS Views

Figure 15.11 Maintain Object Representation

Figure 15.12 Scenario Context in the Workflow

Builder

Figure 15.13 Creation of a New Workflow Scenario

for the Sample Use Case

Figure 15.14 Process Data in a Flexible Block of

the Sample Workflow Scenario

Figure 15.15 Start Event for the Custom Use Case

Figure 15.16 Control Tab of the Flexible Block

Figure 15.17 Activities in the Flexible Block of the

Workflow Scenario

Figure 15.18 Create Activity Screen

Figure 15.19 User Decision Activity for Line

Manager (Level-1)

Figure 15.20 User Decision Activity for HR

Administrator

Figure 15.21 Activities Overview Screen in the

Flexible Block

Figure 15.22 Conditions in the Approve Purchase

Requisition Item Level Standard Workflow Scenario

Figure 15.23 Standard Agent Rules in the Flexible

Block Defaulted while Creating a Custom Scenario

Figure 15.24 Create New Agent Screen

Figure 15.25 Role-Based Agent Rule Configuration

Figure 15.26 Agent Rules

Figure 15.27 Value Helps: Approve Purchase

Requisition Item Level Scenario

Figure 15.28 Value Help via Conditions

Figure 15.29 Email Templates Maintenance

Figure 15.30 Email Templates in the Workflow

Scenario

Figure 15.31 Email Template from Custom

Workflow Scenario Definition

Figure 15.32 Copying Email Content in the

Maintain Email Templates App

Figure 15.33 Manage Workflows App

Figure 15.34 Create New Workflow

Figure 15.35 Properties of the Custom Flexible

Workflow

Figure 15.36 Manage Workflow: Create Steps for

the Custom Use Case

Figure 15.37 Agent Assignment in Flexible

Workflow

Figure 15.38 Activate the Draft Workflow of the

Sample Use Case

Figure 15.39 Copying the Standard Email

Template

Figure 15.40 Naming the Custom Email Template

Figure 15.41 Email Templates Subject and Body

Contents

Figure 15.42 Define Steps for My Inbox Approval

Figure 15.43 Work Item in the First Recipient’s

Inbox

Figure 15.44 Work Item in Second Recipient’s

Inbox

Figure 15.45 Agent Determination Error from

Transaction SWI2_DIAG (Diagnosis of Workflows with

Errors)

Figure 15.46 Workflow Technical Log for HR

Request Use Case

Figure 16.1 Transaction S_ATO_SETUP

Figure 16.2 Maintain Email Templates App

Figure 16.3 Scenario ID

Figure 16.4 Copy Standard Email Template

Figure 16.5 Email Template Details

Figure 16.6 Email Content

Figure 16.7 Email Notification Use Cases

Figure 16.8 Deadline: Email Template

Figure 16.9 Deadline: Create New Email Template

Figure 16.10 Scenario: Email Template

Figure 16.11 Manage Teams and Responsibilities

Figure 16.12 Configure Software Packages

Figure 16.13 Register Package

Figure 16.14 Assign the Transport to the

Registered Package

Figure 16.15 Register Extensions for Transports

Figure 16.16 Transport Scenario

Figure 17.1 SAP BTP Cockpit Sign-In Page

Figure 17.2 SAP BTP Cockpit after Login

Figure 17.3 Add Service Plans

Figure 17.4 SAP Build Process Automation:

Available Service Plans

Figure 17.5 Start Service Configuration with the

Booster Option

Figure 17.6 Start Booster Configuration of the

Service

Figure 17.7 Configuration of the SAP Build Process

Automation Service to a Selective Subaccount and

Space

Figure 17.8 Identity Authentication Service

Selection Screen

Figure 17.9 Booster Created the Service

Successfully

Figure 17.10 SAP Build Process Automation

Service Created and Ready to Use

Figure 17.11 SAP Build Process Automation: Tool

Landing Page after Login to Service

Figure 17.12 SAP Build Process Automation: Store

Figure 17.13 Monitor Workflow: Manage Business

Rules and Process Visibility

Figure 17.14 Select Build an Automated Process

Figure 17.15 Select Business Process to Start a

Workflow Project

Figure 17.16 Name Your Project

Figure 17.17 Workflow Editor to Start Creating the

Workflow

Figure 17.18 Issue during Booster Setup

Figure 18.1 Create a Multi-Target Application

Project in SAP Business Application Studio

Figure 18.2 Create an MTA Project Folder

Figure 18.3 Create a Workflow Module (Part 1)

Figure 18.4 Create a Workflow Module (Part 2)

Figure 18.5 Name Your Workflow Module

Figure 18.6 Provide a Namespace, Workflow

Name, and Description

Figure 18.7 Workflow Editor

Figure 18.8 Create a Script Task

Figure 18.9 Script Task Created

Figure 18.10 Creating a .js File for the Script Task

Figure 18.11 Write the Data Handling Logic in the

.js File

Figure 18.12 Workflow with a Script Task

Figure 18.13 Create a Service Task

Figure 18.14 Configure the Service Task

Figure 18.15 Configured Service Task

Figure 18.16 Creating a Destination

Figure 18.17 Create a User Task

Figure 18.18 Configure Details Section of the User

Task

Figure 18.19 Set a Due Date for the User Task

Figure 18.20 Types of Forms to Create for a User

Interface

Figure 18.21 Create a New Form

Figure 18.22 Editor Screen of the New Form

Figure 18.23 Adding Controls and Configuring the

Form

Figure 18.24 Adding an SAPUI5 Project as the UI

for a User Task

Figure 18.25 Create an Email Task

Figure 18.26 Configure the Email Task

Figure 18.27 Configuring a Parallel Gateway

Figure 18.28 Configure the Sequence Condition

for an Exclusive Gateway

Figure 18.29 Configuring an Exclusive Gateway

Figure 18.30 Setting a Sample Context for Start

Event

Figure 18.31 Configuring the Intermediate Event

Message Properties

Figure 18.32 Configure the Intermediate Timer

Event

Figure 18.33 Configuration of an Intermediate

Escalation Event

Figure 18.34 Add a Boundary Timer Event

Figure 18.35 Configure a Boundary Escalation

Event for a Referenced Subflow

Figure 18.36 Lobby of the SAP Build Process

Automation Cockpit

Figure 18.37 Landing Page of the Build Editor

Figure 18.38 Selecting Build an Automation

Process

Figure 18.39 Selecting the Process Automation

Type

Figure 18.40 Naming the Project

Figure 18.41 Create Your Process Artifacts

Figure 18.42 Creating a Process with a Meaningful

Name

Figure 18.43 Process Builder with a Predefined

Design Template

Figure 18.44 Artifacts Available in the Process

Builder

Figure 18.45 How to Use a Trigger to Start the

Process

Figure 18.46 Creating a Simple Form

Figure 18.47 Create an Approval Form

Figure 18.48 Adding an Automation Task in Your

Process

Figure 18.49 Creating a Decision Task

Figure 18.50 Creating and Editing the Decision

Rules

Figure 18.51 Navigating to the Rules Tab

Figure 18.52 Creating a Text Rule

Figure 18.53 Creating a Rule Condition and

Configuring the Output

Figure 18.54 Creating a Name for the Decision

Table Rule

Figure 18.55 Configuring the Input Condition

Attributes

Figure 18.56 Configuring the Output Condition

Attributes

Figure 18.57 Reviewing and Creating the Rule

Figure 18.58 Configuring the Decision Table

Figure 18.59 Adding a Subprocess

Figure 18.60 Adding an SAP Business Application

Studio–Based Workflow as a Subprocess

Figure 18.61 Uploading an API Specification

Figure 18.62 Uploading the API Specification

Figure 18.63 Naming the Action Project

Figure 18.64 Selecting the Actions

Figure 18.65 Configuring the Selected Actions

Figure 18.66 Releasing the Project

Figure 18.67 Publishing Your Action

Figure 18.68 Selecting and Adding the API

Figure 18.69 Adding the Action to Your Process

Figure 18.70 Creating a Mail Task

Figure 18.71 Editing the Mail Body

Figure 18.72 Controls in a Process

Figure 18.73 Condition Control

Figure 18.74 Branch Control

Figure 18.75 Wait Control

Figure 18.76 Releasing a Project

Figure 18.77 Versions When Releasing a Project

Figure 18.78 Deploy Button

Figure 18.79 Versions of the Project

Figure 18.80 Testing or Starting a New Instance of

the Deployed Process

Figure 18.81 Start a New Instance after Entering a

JSON Payload

Figure 18.82 Additional Parameters for the

Destination

Figure 18.83 Adding the New Destination

Figure 18.84 Adding a Destination Variable for

Your Action Project

Figure 18.85 Adding Destination Environment

Variable under Project Properties

Figure 18.86 Mapping the Environment Variable to

the Destination while Deploying

Figure 18.87 Transport Using the Promote Feature

Figure 18.88 Transport Created in the Dev Node of

SAP Cloud Transport Management System

Figure 18.89 Transport Waiting in the Production

Node to Be Imported

Figure 18.90 Adding Context Fields

Figure 18.91 Creating a Custom Data Type

Figure 18.92 Configuring the Trigger

Figure 18.93 View Trigger Details

Figure 18.94 Initial Steps of the Process

Figure 18.95 Creating a Custom Data Type

Figure 18.96 Setting the Decision Parameters

Figure 18.97 Rule Details

Figure 18.98 Configuring the Conditions

Figure 18.99 Configuring the Output Results

Figure 18.100 Reviewing the Rule

Figure 18.101 Decision Table

Figure 18.102 Decision Field Mapping

Figure 18.103 Create Approval Forms

Figure 18.104 Form Field Data Mapping from the

Context

Figure 18.105 Creating a Condition

Figure 18.106 Adding Condition Criteria

Figure 18.107 Second Decision Step

Figure 18.108 First Condition Check and Second-

Level Approval Steps

Figure 18.109 Second Condition Configuration

Figure 18.110 Third Condition Check

Figure 18.111 Third Condition Check and Action to

Update the Dispute

Figure 18.112 Add Dispute Update Action to the

Process

Figure 18.113 Setting the OData Parameters to

Update the Dispute Case

Figure 18.114 Process Log Showing Successful

Execution of the Process

Figure 18.115 My Inbox Task

Figure 18.116 Creating a Workflow Project

Figure 18.117 Creating a Script Task

Figure 18.118 Creating a Service Task to Fetch the

Business Rule

Figure 18.119 UI Module for the User Task

Figure 18.120 Adding the UI Module to the User

Task

Figure 18.121 Remaining Flow (Part 1)

Figure 18.122 Remaining Flow (Part 2)

Figure 18.123 Intermediate Message Event That

Waits for a Business Event

Figure 18.124 Execution Logs of the Workflow

Figure 18.125 Custom My Inbox Screen

Figure 19.1 Opening the Process in Process

Builder

Figure 19.2 Adding Attributes to the Visibility

Scenario

Figure 19.3 Required Attributes Added

Figure 19.4 Creating the Visibility Scenario

Figure 19.5 Creating the Visibility Scenario

Figure 19.6 Configuring the Visibility Scenario:

General Tab

Figure 19.7 Adding the Process to the Visibility

Scenario

Figure 19.8 Events and Context Attributes

Available in the Visibility Scenario

Figure 19.9 Correcting the Data Types of Context

Attributes

Figure 19.10 Configuring Process Phases

Figure 19.11 Configuring Process Phases

Figure 19.12 Defining More Sub-Statuses

Figure 19.13 Configure Custom Performance

Indicators

Figure 19.14 Releasing the SAP Build Process

Automation Project

Figure 19.15 Deploy Project: Step 1 and Step 2

Figure 19.16 Deploy Project: Step 3

Figure 19.17 Deploy Project: The Final Step

Figure 19.18 Project Status Post: Successful

Deployment

Figure 19.19 Launching the Visibility Dashboard:

Steps 1 and 2

Figure 19.20 Process Visibility Scenario: Launched

Figure 19.21 First-Level Drilldown Feature in the

Process Visibility Dashboard

Figure 19.22 Second-level Drilldown Feature in

the Process Visibility Dashboard

Figure 19.23 Adding Action into the Visibility

Scenario

Figure 19.24 Adding a Condition for the Action

Figure 19.25 Add Action Workflow to Visibility

Figure 19.26 Deployment of the Project after

Configuring the Action to Trigger Workflow

Figure 19.27 Testing Trigger Workflow Action:

Steps 1 and 2

Figure 19.28 Testing Trigger Workflow Action:

Steps 3 and 4

Figure 19.29 Testing Trigger Workflow Action:

Steps 5 and 6

Figure 20.1 My Inbox Link in the Lobby of SAP

Build Process Automation

Figure 20.2 My Inbox in SAP BTP

Figure 20.3 Adding the My Inbox App to the

Contents of Your Site

Figure 20.4 My Inbox App Now Available in

Content Manager

Figure 20.5 My Inbox Made Available in the

Launchpad

Figure 20.6 My Inbox User Action Menu Option:

Manage My Substitutes

Figure 20.7 Adding a Substitute

Figure 20.8 My Inbox Parameters

Figure 20.9 Destination Setup for SAP Build

Process Automation with SAP Task Center

	Notes on Usage
	Table of Contents
	Preface
	Target Audience
	Objective of This Book
	How to Read This Book

	Part I SAP Business Workflow for SAP S/4HANA
	1 Getting Started
	1.1 Workflows in SAP S/4HANA
	1.1.1 Evolution of Workflows from SAP ERP to SAP S/4HANA
	1.1.2 Workflow Options

	1.2 Workflows in SAP Business Technology Platform
	1.3 Workflow Development Tools
	1.3.1 Tools for Classical Workflow
	1.3.2 Tools for Flexible Workflow
	1.3.3 BRFplus Development Tools
	1.3.4 Tools for SAP Business Technology Platform

	1.4 Identity and Access Management
	1.4.1 Roles and Authorizations in SAP S/4HANA
	1.4.2 Roles and Authorizations in SAP Business Technology Platform

	1.5 Summary

	2 Introduction to Classical Workflows
	2.1 Evolution of Classical Workflows
	2.2 Standard Workflows
	2.2.1 Searching for Standard Workflows
	2.2.2 Commonly Used Standard Workflows

	2.3 Configuring the SAP Business Workflow System
	2.3.1 Maintain Runtime Environment
	2.3.2 Maintain Definition Environment
	2.3.3 Maintain Additional Settings and Services
	2.3.4 Classify Tasks as General

	2.4 Activating and Deactivating Standard Workflows
	2.5 Configuring Agents for Standard Workflows
	2.6 When to Develop a Custom Workflow
	2.7 Summary

	3 Building Methods and Tasks
	3.1 Business Object Repository Approach
	3.1.1 Business Object Type Definition
	3.1.2 Defining a Custom Business Object Repository Object Type
	3.1.3 Creating Key Fields and Attributes
	3.1.4 Creating Methods and Defining Properties, Parameters, and Exceptions
	3.1.5 Creating Business Object Repository Events
	3.1.6 Testing a Business Object Repository Object Type
	3.1.7 Creating a Subtype of a Standard Business Object Repository Object Type
	3.1.8 Delegation
	3.1.9 Business Object Repository Programming

	3.2 ABAP Class Approach
	3.2.1 Creating a Workflow Class
	3.2.2 Defining Key Attributes and Non-Key Attributes
	3.2.3 Creating Methods and Defining Attributes, Parameters, and Exceptions
	3.2.4 Adding New Methods for Dialog and Background Tasks
	3.2.5 Method Exceptions
	3.2.6 Creating Events
	3.2.7 Testing an ABAP Workflow Class

	3.3 Task Definition
	3.3.1 Defining Standard Tasks and Task Settings
	3.3.2 Work Item Text and Description

	3.4 Summary

	4 Defining Workflows and Adding Steps
	4.1 Workflow Builder
	4.2 Common Workflow Steps
	4.3 Adding Tasks
	4.3.1 Adding an Activity Step
	4.3.2 Adding a Send Email Step
	4.3.3 Adding a User Decision Step

	4.4 Containers and Bindings
	4.4.1 Types of Containers
	4.4.2 Binding Definition and Binding Operators
	4.4.3 Custom Transformations in Binding

	4.5 Multiline Elements and Dynamic Parallel Processing
	4.6 Deadline Definition
	4.7 Summary

	5 Defining and Triggering Events
	5.1 Event Triggering Techniques
	5.1.1 Event Trigger via Change Documents
	5.1.2 Event Trigger via Status Management
	5.1.3 Event Trigger via Message Control
	5.1.4 Event Trigger via ABAP Code in User Exits, Business Add-Ins, and Custom Programs

	5.2 Event Creators, Receivers, and Event Linkage
	5.3 Start Conditions in Workflows
	5.4 Terminating Events and Instance Linkage
	5.5 Check Function Module and Receiver Function Module for Events
	5.6 Summary

	6 Agent Determination
	6.1 Different Types of Agents in Workflow
	6.1.1 Possible Agents and Responsible Agents
	6.1.2 Excluded Agents
	6.1.3 Actual Agents
	6.1.4 Deadline Agents
	6.1.5 Notification Agents

	6.2 Agent Determination Rules
	6.2.1 Rule Definition
	6.2.2 Rule Container
	6.2.3 Binding to the Rule Container
	6.2.4 Rule Types

	6.3 Possible Agents in Tasks and Default Rules
	6.4 Organizational Structure Definition and Linking to Workflow Agents
	6.5 Summary

	7 Email Notifications and Other Runtime Jobs
	7.1 Prerequisites for Setting Up Email Notifications in Workflow
	7.1.1 Setting Up Email IDs for SAP Users
	7.1.2 Setting up SAPconnect

	7.2 Classical Work Item Email Notifications via Program RSWUWFML2
	7.3 Extended Notification Configuration with Program SWNCONFIG
	7.3.1 Overview of the Notification Process
	7.3.2 Detailed Customizing

	7.4 Adding Inbox and Work Item URL Links to Workflow Work Item Notifications
	7.5 Additional Workflow Runtime Jobs
	7.6 Summary

	8 Workflow Administration, Monitoring, and Troubleshooting
	8.1 Workflow Log
	8.2 Workflow Administration
	8.3 Workflow Error Diagnosis and Resolution
	8.4 Workflow Inbox and Features
	8.5 Substitution and Automatic Forwarding
	8.5.1 Substitutions in SAP GUI
	8.5.2 Substitutions in SAP Fiori

	8.6 Display Dynamic Labels for Tasks to Display in Business Workplace
	8.7 Event Trace and Event Queue Administration
	8.8 Process Incoming Documents with ArchiveLink
	8.9 Summary

	9 Application Link Enabling and Reporting
	9.1 Error Handling during IDoc Processing
	9.1.1 Business Requirements for Inbound IDoc Error Handling
	9.1.2 Handling the Inbound IDoc Error
	9.1.3 Notification of Successful Posting
	9.1.4 Testing Procedure
	9.1.5 Setting Up an Inbound IDoc Process via a Workflow

	9.2 Active Monitoring
	9.3 Common Workflow Data Tables
	9.4 Common Workflow Application Programming Interfaces
	9.5 Workflow Reporting
	9.6 Implementing Program Exits to Capture Data from Workflow Steps
	9.7 Summary

	10 BRFplus
	10.1 Introduction to BRFplus
	10.1.1 Business Rules Management Systems
	10.1.2 Rule Modeling
	10.1.3 Rule Execution Engine

	10.2 Integrating BRFplus Applications in SAP Business Workflow
	10.2.1 BRFplus Application Overview
	10.2.2 Attach a BRFplus Function in a Business Workflow
	10.2.3 Executing the Workflow

	10.3 Summary

	11 Integrating Workflows with User Interface Applications and External Applications
	11.1 My Inbox App Overview
	11.2 Workflow Task Integration with User Interface Applications
	11.2.1 Set Up a Scenario-Specific My Inbox Tile
	11.2.2 Create and Maintain User Attributes: Adding Additional Attributes for a Task
	11.2.3 Launching SAPUI5 Applications from Workflow Tasks
	11.2.4 Launching Web Dynpro Applications from Workflow Tasks

	11.3 Email Templates in SAP S/4HANA
	11.4 Integrating External Applications with SAP Business Workflow
	11.5 Summary

	12 Migrating SAP ERP Workflows to SAP S/4HANA
	12.1 Migration Options from SAP ERP to SAP S/4HANA
	12.2 Conversion Projects (Brownfield)
	12.2.1 Handling System Upgrades for Standard and Custom Workflows
	12.2.2 Migrating Your SAP ERP Workflows to SAP S/4HANA

	12.3 New Implementation Projects (Greenfield) and Selective Data Transition
	12.3.1 Selective Data Transition Overview
	12.3.2 Managing the Technical Migration of In-Process Workflows
	12.3.3 Migrating User Data and SAP Office Settings from SAP ERP to SAP S/4HANA

	12.4 Summary

	13 Workflow in SAP Master Data Governance
	13.1 Introduction to SAP Master Data Governance
	13.1.1 Data Models in Central Governance
	13.1.2 Change Request in Central Governance
	13.1.3 Business Object BUS2250
	13.1.4 Standard Dialog Tasks Used in Workflow Templates
	13.1.5 Standard Dialog Tasks
	13.1.6 Standard Background Tasks
	13.1.7 Agent Determination
	13.1.8 Workflow Container Used by Workflow Templates
	13.1.9 Workflow Log for Change Requests
	13.1.10 Rule-Based Workflow Template
	13.1.11 SAP Master Data Governance, Consolidation and Mass Processing

	13.2 Business Partner Workflows
	13.2.1 Business Partner Data Model and Approach
	13.2.2 Change Requests for Business Partner Master Data
	13.2.3 Workflow Templates Used in Business Partner Change Requests

	13.3 Finance Workflows
	13.3.1 Finance Data Model
	13.3.2 Change Request Types in the Finance Data Model
	13.3.3 Workflow Templates Used in Finance Change Requests

	13.4 Material Workflows
	13.5 Summary

	Part II Flexible Workflow in SAP S/4HANA
	14 Introduction to Flexible Workflow
	14.1 Authorizations and SAP Fiori Applications Required for Development
	14.2 Flexible Workflow Scenarios
	14.2.1 Standard Flexible Scenarios
	14.2.2 Custom Flexible Scenarios
	14.2.3 Comparing Flexible and Classical Workflows
	14.2.4 Choosing Between Classical and Flexible Workflows

	14.3 Migrating to Flexible Workflows
	14.4 Setting Up a Standard Flexible Workflow Scenario
	14.4.1 Finding Standard Workflows on SAP Help
	14.4.2 Finding Workflows in Scenario Editor and the Manage Workflows App
	14.4.3 Activating the Scenario
	14.4.4 Setting Up a Standard Scenario Using the Manage Workflows App

	14.5 Extending the Standard Flexible Scenario
	14.6 Summary

	15 Custom Scenario Development
	15.1 Workflow Class Development
	15.1.1 Use Case for Walkthrough of Custom Scenario
	15.1.2 Classes
	15.1.3 Interfaces
	15.1.4 Attributes
	15.1.5 Events
	15.1.6 Standard Methods

	15.2 Business Objects
	15.2.1 Maintain Business Object Type (V_BO_TYPE)
	15.2.2 Maintain Object Node Type (SBO_V_NODETYPE)
	15.2.3 Maintain Core Data Services View (V_SBO_NODE_CDS)
	15.2.4 Maintain Object Representation

	15.3 Scenario Development
	15.3.1 Context Element
	15.3.2 Process Data
	15.3.3 Control
	15.3.4 Activities
	15.3.5 Conditions
	15.3.6 Agent Rules
	15.3.7 Value Helps
	15.3.8 Email Templates

	15.4 Create a Workflow Template Using the Manage Workflows App
	15.5 Initiating the Custom Flexible Workflow
	15.6 My Inbox Integration
	15.6.1 Define Step Names and Decision Options
	15.6.2 Define Visualization Metadata for My Inbox
	15.6.3 My Inbox for Custom Scenario Walkthrough

	15.7 Troubleshooting
	15.8 Summary

	16 SAP Fiori Applications for Flexible Workflow
	16.1 Adaptation Transport Organizer Setup
	16.2 Maintain Email Templates App
	16.3 Notification Features
	16.4 Manage Teams and Responsibilities App
	16.5 Transporting Extensions
	16.5.1 Configure Software Packages
	16.5.2 Register Extensions for Transport
	16.5.3 Transporting Workflow Scenario Content

	16.6 Summary

	Part III Workflows with SAP Business Technology Platform
	17 Introduction to SAP Build Process Automation
	17.1 Overview
	17.2 Typical Use Cases for SAP S/4HANA
	17.3 System and Service Requirements
	17.4 Setting Up the Required Services
	17.5 Working with the Workflow Cockpit
	17.6 Security
	17.6.1 Process Automation Admin
	17.6.2 Process Automation Developer
	17.6.3 Process Automation Participants

	17.7 Troubleshooting
	17.8 Summary

	18 Process Development
	18.1 Workflow Design Techniques
	18.2 Creating a Workflow Using SAP Business Application Studio
	18.2.1 Create a Workflow Module
	18.2.2 Tasks in Workflows
	18.2.3 Using Gateways
	18.2.4 Events

	18.3 Creating a Workflow Using Process Builder
	18.3.1 Using Process Builder
	18.3.2 Using Triggers
	18.3.3 Using Forms
	18.3.4 Using Approval Forms
	18.3.5 Using Automation Tasks
	18.3.6 Using Decisions
	18.3.7 Using Subprocesses
	18.3.8 Using Actions
	18.3.9 Using Mail
	18.3.10 Using Controls

	18.4 Building and Deploying the Project
	18.4.1 Release
	18.4.2 Deploy
	18.4.3 Run

	18.5 Destination Configuration with Authentication
	18.5.1 Destination Setup
	18.5.2 Authentication

	18.6 Transport Management
	18.7 Using APIs for SAP Build Process Automation
	18.7.1 Application Programming Interfaces for Workflow
	18.7.2 Application Programming Interfaces for Decisions
	18.7.3 Application Programming Interfaces for My Inbox

	18.8 Design a Process/Workflow for the Use Case
	18.8.1 Use Case and Solution
	18.8.2 Design Using Process Builder
	18.8.3 Design Using SAP Business Application Studio

	18.9 Summary

	19 Process Visibility
	19.1 Configuring Process Visibility
	19.1.1 Roles
	19.1.2 Process Preparation
	19.1.3 Create Visibility Scenario
	19.1.4 Configure Visibility Scenario
	19.1.5 Add Process to the Visibility Scenario
	19.1.6 Configure Phases
	19.1.7 Configure Status
	19.1.8 Configure Performance Indicators
	19.1.9 Release the Project
	19.1.10 Deploy the Project

	19.2 Testing the Process Visibility Scenario
	19.3 Process Monitoring and Real-Time Insights
	19.4 Add Workflow Actions to the Dashboard
	19.5 Using Application Programming Interfaces for Process Visibility
	19.6 Summary

	20 Task Processing with My Inbox
	20.1 My Inbox for SAP Business Technology Platform
	20.1.1 Standard App in SAP Build Process Automation
	20.1.2 Configure My Inbox in SAP Build Work Zone

	20.2 SAP Task Center
	20.3 Summary

	A The Authors
	Index
	Service Pages
	Legal Notes

